节点文献

隧道工程热液固多场耦合效应研究

Study on Multi-field Coupled Effects of Heat, Liquid and Solid in Tunnel Works

【作者】 谢红强

【导师】 何川;

【作者基本信息】 西南交通大学 , 桥梁与隧道工程, 2006, 博士

【摘要】 隧道工程总是赋存于一定的地质系统中,地下水、地应力和温度是该物理地质环境中的三个主要因素,隧道围岩温度场、渗流场和应力场之间相互依存,相互联系、相互影响,将各物理场分开进行研究而忽略其相互耦合作用的研究所得出的结论往往与工程实际情况不相适应,也不能满足当前隧道工程建设的需要,因此,有必要对隧道进行热液固多场耦合效应研究,探明各介质的力学特性以及它们之间的相互影响,从而真实反映隧道结构及围岩的实际工作状态。论文以复杂条件下的寒区隧道、高水压水下盾构隧道等典型隧道工程为研究对象,采用热液固耦合数学模型,综合现场跟踪试验、数值模拟等研究手段对寒区及水下隧道进行热液固耦合分析,就高水压水下盾构隧道的施工期安全性及寒区隧道抗防冻保温层设计进行了较系统的研究并取得系列的研究成果。1.选择水下盾构隧道有代表性的“砂岩层”和“砂岩-泥岩互层”断面,进行液固耦合效应的现场跟踪测试研究,系统测试实际作用在盾构隧道主体结构上的外水压力、土压力的量值及分布规律,探明水下盾构隧道主体结构与围岩、长江水的相互作用特征,判明盾构隧道主体结构的实际受力状态及结构安全性。2.采用有限元数值模拟法,对施工期围岩及结构进行渗流场单场数值模拟分析,探明隧道掘进过程渗流场的变化规律;利用液固双场耦合理论,采用有限元数值模拟,研究施工期间隧道围岩及主体结构的渗流场、应力场及变形场的分布和演化规律以及相互影响关系,并结合现场跟踪测试对施工期主体结构的安全性作出评价。3.采用伴相变温度场数学模型,对寒区隧道围岩及结构温度场进行数值模拟分析,探明寒区隧道温度场分布规律及影响因素;对不同材料、不同结构型式/厚度的保温隔热措施进行围岩及衬砌相变温度场研究,获得保温层施作前后的围岩、衬砌温度场,确定合理的试验段保温层厚度。4.采用相变温度场、渗流场、应力场耦合数学模型,对保温层施作前后的围岩及结构进行热液固三场耦合分析,探明寒区隧道运营期围岩温度场、渗流场及应力场的分布及演化规律,揭示季节性冻融冻胀条件下隧道结构受力特性,对寒区隧道保温层的保温效果进行数值验证;最后,将寒区隧道保温层材料及厚度的数值模拟方法应用于鹧鸪山隧道,计算满足抗防冻所需的合理保温层材料及厚度,并利用现场试验进行了保温效果的验证,从而为类似寒区隧道的抗防冻设计提供有益的参考。本项研究开展面向高水压、高寒等条件下的复杂隧道工程的热液固多场耦合效应研究,对高水压水下盾构隧道施工期安全保障措施、高寒隧道的抗防冻措施的设计与实施均具有重要的现实意义。随着我国基础设施建设的高速发展,特别是2005年国家高速公路网规划的发布,以高寒隧道、江/海底隧道等为代表的复杂隧道工程呈日益增长的趋势,开展这方面的基础课题研究,将对目前以及未来国家重大隧道工程具有重要参考价值。

【Abstract】 Tunnel works always exists in a certain geologic system, where groundwater, ground stress and temperature are the three main factors. Since the relations of mutual dependence, interrelation and infection lie among temperature field, seepage field and stress field of tunnel surrounding rock, such studies, which separate the three physical fields and ignore mutual coupling effects, are neither inconformity with actual project conditions nor satisfy present tunnel construction. Therefore, it is necessary to carry out the studies of heat-liquid-solid coupling effects, and prove mechanical properties and mutual effects of such media, and so, veritably reflect actual working conditions of tunnel’s structure and surrounding rock. Based on such typical tunnel works under complex conditions as high-cold tunnel, high-water-pressure sub-river tunnel, etc, heat-liquid-solid coupling mathematical model, with such research method as in-situ tracking test and numerical simulation, etc, are used to carry out heat-liquid-solid coupling analysis for high-cold and high-water-pressure tunnels, and systematically and deeply study the construction safety of high-water-pressure sub-river tunnel and design of insulating layer for high-cold tunnel. Such reseach results are attained as follows:1. Select typical sandstone layer and alternation of sandstone-siltstone layer to carry out in-situ tracking test, and systematically test actual external water pressure and earth pressure actually acting on agent structures of sub-river shield tunnel, reveal mutual effects among agent structure, surrounding rock and water from Yangtze River, and clearly distinguish the actual stress state and structure safety of agent structure of sub-river shield tunnel.2. Apply FEM numerical simulation method to analyze single seepage field for surrounding rock and agent structure in construction period, and reveal variation laws of seepage field in the course of construction. Based on coupling theory of seepage-stress field, apply FEM numerical simulation to study the distribution and evolution laws of seepage, stress and deformation fields in construction period, and evaluate safety performances of agent structure in construction period combining with in-situ tracking test.3. Apply mathematical model of temperature field with phase-change to simulate temperature field of surrounding rock and structure in cold region tunnel so as to reveal distribution laws of temperature field and influential factor in cold-region tunnel. At the same time, apply numerical simulation of phase-change temperature field to carry out in-situ erification and numerical simulation for heat preservation effects of test sections with different heat insulation materials, structure types/thickness, reveal distribution laws of temperature field of surrounding rock and linings with and without insulating layers. Combine the results of in-situ test and numerical simulation to determine reasonable thickness of insulating layer.4. Apply coupling mathematical model of phase-change temperature field, seepage field and stress field to carry out coupling analysis of distribution laws of temperature field, seepage field and stress field, find stress conditions of tunnel structure under seasonal freeze thawing and frost heaving conditions; Combine with the in-situ test results to verify the insulating property of insulating layers with different insulation material/thickness and determine a reasonable thickness of insulating layer, and therefore provide well references for antifreezing design of analogous tunnels in cold region.For such heat-liquid-solid coupling studies facing to complex underground constructions under high water pressure and high cold conditions, it is actually significant to safety control measures of sub-river shield tunnel in construction period and design and actualization of frostresisting antifreezing measures of high-cold highway tunnel. With the rapid development of infrastructural constructions, especially the issuance of 2005 State Expressway Network Layout, such complex underground constructions as high-cold tunnel, sub-river/sub-sea tunnel, etc, take on evergrowing trends. The results about such research task can be significant references for great underground constructions at present and in the future.

  • 【分类号】U452.11
  • 【被引频次】10
  • 【下载频次】719
节点文献中: 

本文链接的文献网络图示:

本文的引文网络