节点文献
曳引电梯系统动态理论及动力学参数优化方法研究
Study on Dynamics and Parameter Optimization Method of a Traction Elevator System
【作者】 刚宪约;
【作者基本信息】 浙江大学 , 机械制造及其自动化, 2005, 博士
【摘要】 随着城市化的发展和人们生活水平的提高,电梯(特别是曳引电梯)在人们生活、工作中日益发挥着重要作用。本学位论文结合杭州市产学研项目“中高速电梯动态特性仿真分析平台开发”,采用理论分析、计算机仿真利实验研究相结合的方法,对曳引电梯系统动力学建模与分析方法、动力学参数优化等方面进行了深入系统地研究。 第一章,阐述了本学位论文的研究背景与意义,详细介绍了国内外在电梯动力学、舒适性评价和振动控制等领域的研究现状。在此基础之上,提出了论文的主要研究内容。 第二章,在系统讨论曳引电梯系统垂直振动动力学参数建模方法的基础上,利用Lagrange方程分别建立了曳引电梯1:1系统11自由度和2:1系统17自由度的垂直振动模型。工程实例验证了模型的有效性。 第三章,以轿厢—轿架—导向系统为研究对象,利用坐标变换方法,建立了电梯系统水平振动的随机偏差激励模型及其分析方法。基于Monte Karlo法,对电梯水平振动响应的统计分析方法进行了探讨。 第四章,基于一维弦的波动理论,以曳引绳—轿厢为研究对象,建立了电梯系统水平振动的波动模型:基于坐标变换、分离变量法和Garlerkin加权余量法,将分布质量的波动模型转化为集中质量的近似模型,可以有效地进行模态和响应计算。 第五章,主要讨论了自主开发的电梯动力学仿真分析系统的整体框架和设计思想,以及该系统中使用的模态分析、谐响应分析、瞬态响应分析和随机振动谱分析等数值方法。首次提出了一种基于FFT和Romberg数值积分思想的Duhamel积分新算法——R-FFT。 第六章,在分析不同类型影响因素的基础上,建立了基于谐响应最小的电梯系统垂直振动优化模型,并通过灵敏度分析检验最优解的有效性;首次提出了一种新的基于字节型动态编码的遗传算法,可以高效地求解电梯垂直振动优化模型。实际工程算例验证了优化模型和算法的有效性。 第七章,基于试验模态理论,进行了电梯系统垂直振动锤击试验模态分析;利用附加偏心质量的办法,进行了电梯系统垂直振动响应实验。电梯动力学特性实验验证了本文建立的振动模型的正确性和分析方法的有效性。 第八章,对论文的主要研究工作和创新点作了总结,并对未来的研究工作进行了展望。
【Abstract】 With the development of urbanization and improvement of living conditions, elevators, especially traction elevators, play an important role in human life. Supported by "Development Of A Dynamic Simulation System For Medium And High Speed Elevators", an enterprise-college-institute cooperative project, actively absorbed the original thoughts, new theories and technologies of correlative subjects, the dynamic model and analysis methods of traction elevators were established, and the optimization techniques of dynamics parameters, are studied systematically by combing theoretical analysis, computer simulation with experiments.In Chapter 1, the background and significance of the research are introduced, the development trend and current research situations of the dynamics, evaluation of ride qulity and vibration reduction techniques of traction elevators are expatiated, and the study contents of this dissertation are proposed.In Chapter 2, the modeling methods of dynamic parameters of a vertical elevator system were discussed, then the vertical vibration model of a 1:1 and 2:1 traction elevator system were established based on Lagrange formula. Engineering instances show the validity of these vibration models.In Chapter 3, taking the system of car cab, car frame and guider as research object, using coordinate transformation, a random-deviation exciting model of the lateral vibration of an elevator was built, and its computation method was studied. Based on Monte Karlo method, the lateral vibration quality was analyzed.In Chapter 4, Based on the wave theory of one-dimensional string vibration, a horizontal vibration wave model is built to simulate the dynamic performance of a high speed elevator system. Through coordinate transformation, separation of variables and Galerkin’s method is used to discretize the governing partial differential equations into a dumped-mass system, which can be solved effectively with classic methods.In Chapter 5, the frame and methodology of the designed dynamic simulation system for elevators were introduced. Based on FFT (Fast Fourier Transform) method and Romberg integration technique, a fast and high precise Duhamel integral algorithm R-FFT was proposed.In Chapter 6, based on the different properties of dynamic parameters, making use of harmonic response and sensitivity analysis, a vertical vibration optimization model of elevators was built, and a new dynamic byte coding genetic algorithm was proposed to solve this optimization problem. An engineering instance shows the effectiveness of model and algorithm.In Chapter 7, experiments of modal analysis and response analysis of a elevator vertical vibration system were carried out. The results show the correctness ofdynamic models and the validity of numerical methods established in this dissertation.In Chapter 8, the chief work and innovations of this dissertation have been summarized, and the further research subjects have been proposed.
【Key words】 traction elevator; vertical vibration; lateral vibration; parameter optimization; dynamic byte coding method; test modal analysis; parameter fitting;