节点文献
新型金属酞菁及其温敏聚合物的合成和仿酶催化性能
Preparation and Mimic Enzymic Activity of Novel Metal Phthalocyanines and Thermosensitive Copolymer
【作者】 潘勇;
【作者基本信息】 浙江大学 , 高分子化学与物理, 2005, 博士
【摘要】 金属酞菁衍生物是平面大环配合物,结构上与细胞色素P450的活性中心金属卟啉相似,是典型的金属辅酶模型。研究表明,钴、铁等金属酞菁能够催化大多数P450单加氧酶的反应,具有优良的催化活性,同时金属酞菁的中心金属离子、环外衍生基团、周围微环境等因素均会对其催化活性、选择性产生重大影响。因此,合成新型的金属酞菁系列配合物及其聚合物对于模拟细胞色素P450及应用于催化降解持久性有机污染物、绿色有机合成等领域具有重要的意义。 目前已开发出多种金属酞菁衍生物,但普遍存在溶解性差、合成路线复杂等缺点。论文采用苯酐—尿素路线制备了四氨基钴(铁)酞菁衍生物,并通过马来酸酐修饰四氨基钴(铁)酞菁环上的氨基,首次制备了水溶性、可聚合的酞菁衍生物——2,9,16,23-四马来酰胺基钴(铁)酞菁。与常见的水溶性酞菁衍生物(四羧基酞菁、四磺酸基酞菁)相比,2,9,16,23-四马来酰胺基钴(铁)酞菁具有合成路线简单,条件温和,收率高的优点,最佳改性条件为n氨基酞菁/n马来酸酐=1∶5,T=60℃,Time=3h,收率可达到79.6%。产物使用IR、UV、EA、TGA等方法进行了表征。与四羧基钴酞菁相比,2,9,16,23-四马来酰胺基金属酞菁水溶性好,并可部分溶解在THF中,这是由于酞菁环侧链有大的取代基团,降低了酞菁环的缔合趋势所致。 金属酞菁作为模拟酶催化剂主要以模拟氧化物酶、模拟过氧化氢酶、模拟过氧化物酶三种机理催化反应。本文选择两类反应:1) 2-巯基乙醇(MEA)的室温氧化反应(模拟氧化酶);(2) 过氧化氢的室温分解反应(模拟过氧化氢酶),测定了2,9,16,23-四马来酰胺基钴(铁)酞菁对上述反应的催化性能。与四羧基钴酞菁、四磺酸基钴酞菁相比,四马来酰胺基钴酞菁催化MEA氧化反应的速率常数k5值为503.8 min-1,大大高于四磺酸基钴酞菁和四羧基钴酞菁的速率常数(分别为300.1min-1和224.3 min-1),并且该反应符合Michaelis—Menten公式,其米氏常数Km为4.2×10-3 mol·L-1,小于四磺酸基钴酞菁(3.17×10-2 mol·L-1)和四羧基钴酞菁(5.31×10-2 mol·L-1),表明2,9,16,23-四马来酰胺基钴酞菁对MEA的亲和力更强,MEA易与酞菁平面轴向配位,并与O2分子生成三元配合物(RS-—酞菁—O2),进而加速MEA氧化反应的进程。另外,本文也考察了2,9,16,23-四马浙江大学博士学位论文J摄型盆属爵脊女二澎虚硬;癸泞渺功分成匆么必睽化趁老来酞胺基铁(钻)酞著对日202分解反应的催化性能。结果表明,2,g,16,23一四马来酞胺基铁酞著的催化活性高于2,9,16,23一四马来酞胺基钻酞著,这是由于日00-与铁酞著的配合能力高于钻酞著,该分解反应也符合Michaelis一Menten公式,米氏常数Km为。.0877 mol.L一1,分解速率常数场=7.g6min一,。 由于2,9,16,23一四马来酞胺基钻(铁)酞著侧链上含有可共聚的双键基团,选择N一异丙基丙烯酞胺作为共聚单体,在水相中通过氧化还原引发聚合,制得了新型金属酞著/异丙基丙烯酞胺温敏性共聚物。不同溶剂(水、乙醇、丙酮)的共聚物紫外谱图表明,2,9,16,23一四马来酞胺基钻(铁)酞著己与N-异丙基丙烯酞胺发生共聚合反应。与聚异丙基丙烯酞胺(pNI尸A)类似,该共聚物具有温敏性,采用浊度法测定了共聚物的最低临界溶液温度(LCS下)以及影响LCS丁的因素。与尸NlpA相比,共聚物的LCS丁(34.2℃)高于均聚物(32.5℃)。作为高分子催化剂,本文考察了金属酞蓄/异丙基丙烯酞胺共聚物对MEA氧化反应和日20:分解反应的催化性能,并测定了上述反应的米氏常数和速率常数。 由于金属酞警/异丙基丙烯酞胺共聚物具有优良的催化活性和溶解性,作为模拟过氧化物酶,首次应用于废水中染料的催化降解。选择了两类典型的结构染料:活性艳蓝KN一R(葱醒型)和活性艳红(偶氮型)X一3B,以日20:为氧化剂,在钻 (铁)酞菩/异丙基丙烯酞胺共聚物催化下,测定了不同条件下染料的降解速率。结果显示,金属酞著/异丙基丙烯酞胺共聚物对于高浓度的染料废水(200mg几)具有优良的催化降解活性,并且铁酞菩/异丙基丙烯酞胺共聚物高于钻酞著/异丙基丙烯酞胺共聚物。在铁酞著/异丙基丙烯酞胺共聚物催化下,确定了两种活性染料催化降解的最佳条件,同时考察了电解质浓度、聚合物温敏性对于染料降解速率的影响。改变反应物和催化剂浓度,测定了染料的初始降解速率和动力学方程。对于活性染料KN一R和x一3日,其降解速率常数分别为312.91(dm,m。l一’)o84min一’和a37.9(dm,m。l一’)ogmin一’,远高于Fenton一Iike型催化剂。作为新型的溶解一非溶解催化剂,当溶液温度升至LCS丁以上时,催化剂即可从反应体系中分离出来,为循环使用创造了极大的便利。循环实验(n=5)显示,金属酞著/异丙基丙烯酞胺共聚物仍保持较高的催化活性,是一类极具应用前景的新型高分子催化剂。 尖娜绿2,g,16,23一四马来酞胺基钻(铁)酞著;酞菩/异丙基丙烯酞胺共聚物;温敏性;模拟酶;2一琉基乙醇;过氧化氢;染料;降解
【Abstract】 Metallophthalocyanine complex is a class of synthetic compounds, which consists of macrocyclic tetraazaporphyrin structure. Because of its structural similarity to the active center of cytochrome P-450, it can promote many reactions through oxidase-like, catalas-like, as well as peroxidase-like mechanism.In this dissertation, a novel series of aqueous soluble phthalocyanine were synthesized by modification of cobalt or iron tetraaminophthalocyanine with maleic anhydride. Compared with normal aqueous soluble phthalocyanines, such as cobalt terasulfo-phthalocyanine(Co-SuPc) and cobalt tetracarboxyphthalocyanine(Co-CPc), cobalt tetra(N-carbony!acrylic)aminephthalocyanine(Co-MPc) was synthesized under ambient conditions(60 ℃, DMF as solvent) and obtained higher yield(79.6%).The product was characterized by elemental analysis, FT-IR, TGA, and so on. UV-VIS spectra showed that the aggregation of the Co-MPc molecular was mostly restrained due to the bulky peripheral substitutions on the cobalt phthalocyanine rings.The catalytic activity of Co-MPc and Fe-MPc was investigated upon two kinds of reactions, which were the oxidation of 2-mercaptoethanol (MEA) and the decomposition of H2O2. The outcome stated that Co-MPc had the best catalytic activity for the oxidation of MEA and Michaelis constant (Km) was 4.2×10-3mol·L-1, much lower than Co-SuPc(3.17× 10-2 mol·L-1) and Co-CPc(5.31 ×10-2 mol·L-1). It was shown that Co-MPc had the greatest affinity with MEA than other phthalocyainines as oxidase-like enzyme. Furthermore, as a catalas-like enzyme, Fe-MPc decomposed with higher rate than Co-MPc at the same conditions. For Fe-MPc, the Michaelis constant, Km, was 0.0877 mol·L-1 and the decomposition rate constant, k3, was 7.96min-1.Because of unsaturated double bonds in the side chains of Co-MPc (or Fe-MPc), a novel thermosensitive copolymer (Co-HG, or Fe-HG) was prepared after Co-MPc (or Fe-MPc) copolymerized with N-isopropylacrylamide. The copolymer could be dissolved in most of solvents except hexane. It also revealed a lower critical solution temperature phenomenon (LCST) at 34.2℃ in water, higher than the LCST ofPoly(N-isopropylacrylamide)(32.5℃). As a novel polymer catalyst, the catalytic activity for the oxidation of MEA and the decomposition of H2O2 was examined. This polymer catalyst served as a homogeneous catalyst of oxidation of MEA below LCST and precipitated from the solution with the steep drop of catalytic activity above LCST. The Michaelis constant of the oxidation of MEA was 0.011 mol·L-1 under the catalysis of Co-HG, and the rate constant was 289min-1. Furthermore, the kinetics of the decomposition of H2O2 was also investigated and Km was 0.1012 mol·L-1 under the catalysis of Fe-HG.Since the phthalocyanine/isopropylacrylamide copolymer had great solubility and catalytic activity, the hydrogen peroxide oxidation of dyes was studied under the catalysis of the copolymer. Two different structural dyes, C. I. Reactive Blue 19 (KN-R) and C. I. Reactive Red 2 (X-3B), were selected in the experiment. Fe-HG had higher catalytic activity than Co-HG, which may be owing to the involvement of PcFeIV=O. Effects of different parameters like initial concentrations of dye, H2O2, phthalocyanine in copolymer, pH of solution, reaction temperature and added electrolytes on the oxidation process had been studied. The results indicated that 3.19 × 10-4moI·L-1 KN-R could be most effectively degraded at a dye:Pc:H2O2 molar ratio of 1:0.031:10.9 at pH=2 and 25°C, while 0.813X 10-4mol·L-1 X-3B could be decomposed with the dye:Pc:H2O2 molar ratio of 1:0.023:10.9. A detailed investigation on the kinetics of the oxidative degradation of two dyes was carried out. The initial rates of degradation of KN-R and X-3B were RKn-r = 321.1[KN-R]0.37[Pc]0.90[H2O2]0.57 and RX-3b = 836.3 [X-3B]0.27[Pc]1.06[H2O2]0.57, respectively. Significantly, the thermosensitive copolymer could be separated easily from the dye solution when the solution temperature was above LCST. After recycling experiment for six times, the copolymer still kept most of