节点文献

小浪底水库修建后黄河下游河道高效输沙水量研究

Study on the High Efficient Sediment-carrying Water Volume in the Lower Yellow River After the Construction of Xiaolangdi Reservoir

【作者】 严军

【导师】 胡春宏;

【作者基本信息】 中国水利水电科学研究院 , 水力学及河流动力学, 2003, 博士

【摘要】 黄河以其灾害频繁、难以治理闻名于世,其主要原因是水少沙多导致泥沙在河床上大量沉积,河床逐年抬高、过洪能力降低。近年来,随着沿黄社会经济的发展,黄河问题更加突出。治理黄河、开发黄河,必须充分利用黄河有限的水资源,既最大限度地满足用水需求,又使下游河道严重淤积的状况有所改善,因此,本文着重研究了小浪底水库修建后黄河下游河道的高效输沙水量。 通过分析总结黄河下游河道水沙特性与输沙水量研究成果,提出了新的输沙水量概念及计算方法,计算和分析了黄河下游河道输沙水量与单位输沙水量,并采用泥沙数学模型对小浪底水库修建后黄河下游河道高效输沙水量进行了研究。主要研究成果如下: (1)在以往输沙水量研究成果的基础上,从输沙机理分析着手,根据河道输水输沙实际过程,剖析径流量中各部分水量在泥沙输移中所起的作用,通过与净水量加以区别,提出了新的输沙水量概念,以及基于输沙效率的输沙量法、含沙量法和冲淤比修正法等输沙水量计算方法; (2)根据1950~2000年黄河下游河道的实测水沙资料,分析了1950~2000年汛期、非汛期、全年、洪水期以及三门峡水库不同运用时期黄河下游河道的水沙特性、冲淤变化及其影响因素,指出三门峡水库不同运用时期(1950~1959、1960~1973、1974~1985、1986~2000年)和1950~2000年整个下游河道汛期冲淤比为零时,小浪底站汛期临界平均流量分别为3110、3499、3701、3902和3349m~3/s,临界平均含沙量分别为30.13、27.72、18.72、15.18和23.98kg/m~3;各时期整个下游河道汛期冲淤比为20%时,小浪底站汛期平均流量分别为2038、2178、2356、2499和2224m~3/s,平均含沙量分别为49.19、43.70、34.96、30.17和41.06kg/m~3; (3)根据输沙水量的概念与计算方法,采用输沙量法、含沙量法和冲淤比修正法计算得到了1950~2000年下游河道输沙水量与单位输沙水量,分析了下游河道各时期输沙水量与单位输沙水量特性,探讨论了径流量、输沙量、流量、含沙量、冲淤量、来沙系数等因素对输沙水量的影响,建立了各站单位输沙水量与本站含沙量等因素的关系(如q′=k·S~m),指出三门峡水库不同运用时期(1950~1959、1960~1973、1974~1985、1986~2000年)及1950~2000年下游河道汛期高效单位输沙水量分别为17.25、19.40、24.18、27.99、20.63 m~3/t,高效输沙水量分别为183.76、中国水利水电科学研究院博士学位论文·小浪底水库修建后黄河下游河道高效输沙水量研究196.16、211.72、224.15、200.22亿m3; (4)利用泥沙数学模型对1974一1979年黄河下游河道天然水沙过程进行了优化,并分析了这些优化措施的减淤效果;通过小浪底水库适当调整水沙过程,使小浪底站大流量时段集中输沙,可以产生明显的减淤和节水效果;同样的输沙量,适当调整小浪底站水沙过程可以使减水率达到40%; (5)根据小浪底水库修建后可能出现的水沙情况,提出了小浪底水库修建后黄河下游河道高效输沙的水沙组合,通过泥沙数学模型计算、分析了采用这些水沙组合时黄河下游河道的冲淤情况,验证了高效输沙水量和高效输沙水沙组合的设计方法。小浪底水库修建后,通过小浪底水库适当调整水沙过程,小浪底站汛期输沙量分别为4.8和6.5亿t、平均含沙量分别为38.58、43.28k岁m,时,整个下游河道汛期冲淤比为20%,小浪底站汛期高效单位输沙水量分别为22.45和19.92m3lt,黄河下游河道高效输沙水量分别为107.76和129.51亿m3。关键词:黄河下游,径流量,输沙量,冲淤比,小浪底水库, 输沙水量,单位输沙水量,高效输沙水量

【Abstract】 The Yellow River is famous in the world for the high frequency of disaster and the difficulty to be controlled. The main reasons are insufficient water and excessive sediment, which lead to a large quantity of sedimentation, the raise of the bed level year by year, and the decrease of the flood-conveying capacity. Along with the economical development in the Yellow River basin in recent years, the problem of the Yellow River becomes more protruding. To harness and explore the Yellow River, we must make full use of the limited water recourse to best meet the water-consuming requirement as well as to improve the serious sedimentation in the lower Yellow River. Thus, the high efficient sediment-carrying water volume in the lower Yellow River after the construction of Xiaolangdi reservoir is emphatically studied in this dissertation.By analyzing and summarizing the characteristic of water-sand and sediment-carrying in the lower Yellcw River, new concepts and methods to calculate the sediment-carrying water volume are stated. The sediment-can-yuig water volume and unit sediment-carrying water volume in the lower Yellow River are then calculated. Finally, the high efficient sediment-carrying water volume in the lower Yellow River after the construction of Xiaolangdi reservoir is studied by using the sediment mathematic model. The main conclusions are as follows,(1) Based on previous research and commenced on the analyzing of sediment-carrying mechanism, the function of transporting sediment of every part in whole water volume is studied according to the real sediment-carrying process in channel. Apart from the net water volume, the new concept of sediment-carrying water volume and its calculating methods base on the sediment-carrying efficiency, such as the sediment-carrying volume, the sediment concentration and scouring-depositing ratio, are put forward.(2) According to the field data of sediment and water volume in the lower Yellow River from 1950 to 2000, the characteristic of water-sand and sediment-carrying in lower Yellow River in different periods and their influential factors are analyzed. In the flood seasons of 1950-1959, 1960-1973, 1974-1985, 1986-2000 and 1950-2000, when the scouring-depositing ratio in the whole lower Yellow River is 0, the critical discharges at Xiaolangdi station are 3110, 3499, 3701, 3902 and 3349m3/s respectively, and the corresponding critical sediment concentrations at Xiaolangdi station are 30.13, 27.72, 18.72, 15.18 and 23.98kg/m3. When the scouring-depositing ratio is 20%, the critical discharges at Xiaolangdi station are 2038, 2178, 2356, 2499 and 2224m3/s respectively, the corresponding critical sediment concentrations at Xiaolangdi station are 49.19, 43.70, 34.96, 30.17 and 41.06 kg/m3.(3) According to their concepts and calculating methods, the sediment-carrying water volume and unit sediment-carrying water volume in the lower Yellow River from 1950 to 2000 are calculated, meanwhile, their characteristic is analyzed. Moreover, the relations between them andtheir influential factors, such as volume of runoff and sediment, discharge, sediment concentration, sedimentation, etc., are investigated and an equation reflecting the relation between the unitsediment-carrying water volume and sediment concentration, is established, q’=k Sm. In theflood seasons of 1950-1959,1960-1973, 1974-1985,1986-2000 and 1950-2000, the high efficient unit sediment-carrying water volumes of the lower Yellow River are 17.25, 19.40, 24.18, 27.99 and 20.63 m3/t respectively, the corresponding high efficient sand-transport water volumes are 183.76, 196.16,211.72, 224.18 and 200.22 10V.(4) Based on the real happened water-sand series in the lower Yellow River from 1974 to 1979, the optimized water-sediment combinations are studied by the sediment mathematic model. The optimization results show that adjusting the water-sand processes by Xiaolangdi reservoir can decrease deposit obviously and save water greatly. To transport the same amount of sediment in the flood season, up to 40% of water could be saved th

节点文献中: 

本文链接的文献网络图示:

本文的引文网络