节点文献

楔环连接结构静力接触行为与动力学特性研究

Study on Static Contact Behaviors and Dynamical Characteristics of Wedge-Ring Connection Structure

【作者】 赵荣国

【导师】 陈忠富;

【作者基本信息】 中国工程物理研究院 , 工程力学, 2004, 博士

【摘要】 楔环连接与螺钉连接和管螺纹连接相比具有使连接壳体外表面更加光顺、外形尺寸相对缩小、连接附加质量轻、结构紧凑、连接工艺更简单和便于拆装等优点而在鱼雷、水雷和一些特种结构中已得到了实际应用。楔环连接结构是彼此接触的多变形体组合结构,其中的非线性因素包括材料、几何、接触与间隙、耗散、运动非线性等,这些非线性因素的存在使得结构的力学行为较线性要复杂得多,因此,研究并阐明非线性力学现象的机理,探求相应的分析计算方法,不仅具有重要的学科意义,同时通过为工程结构的设计提供理论支持而反映出重要的应用价值。本文采用理论分析、有限元数值模拟和实验研究相结合的方法,开展楔环连接结构的非线性静力行为与动力学特性研究。这些研究工作跨越了一个较为宽广的应用范围(从结构的非线性静力学接触行为研究到具有接触特征的结构振动与冲击非线性响应研究),提出了结构静、动力学特性研究中所遇到的技术难点(从结构简化的非线性单自由度动力学模型参数辨识到一个具有接触力学特征的三维多部件组合结构的非线性静力行为与动力学特性分析)的解决方法,取得了一些研究成果,可供楔环连接结构以及其它类似复杂结构的理论分析、数值模拟和实验研究参考,并为结构的设计与使用提供技术支持。 首先论述非线性接触理论的发展概况以及实际工程接触问题的研究现状,介绍连接结构静力接触行为、振动与冲击响应有限元数值模拟的研究进展,综述非线性结构系统的建模与参数辨识的研究现状,并对楔环连接结构理论分析、有限元数值模拟与实验研究以及设计与使用所取得的研究进展作简要的回顾。第二章为静力接触问题的非线性有限元理论基础,分别给出接触问题积分形式的数学描述与离散形式的迭代方程。 第三章利用有限元数值模拟、理论分析和实验研究结合的方法,开展单轴拉伸载荷作用下楔环连接结构的静力学接触行为研究。在实验研究中,采用电测与光测结合的方法测量结构连接部位的变形与位移分布,MTS810材料实验机自带的力传感器和应变仪测量结构的载荷一总位移曲线。建立楔环连接结构的三维摩擦接触有限元模型,计算结构连接部位环向与轴向应力,模拟轴向拉伸过程中载荷达到某临界值时载荷—总位移曲线的转折,合理解释产生转折的力学机制。对于实验难以测量的装配于环形槽中的楔环带,给出了有限元数值模拟结果。建立楔环连接结构的参数化二维有限元接触模型,研究楔环连接结构公差配合对结构应力与变形的影响,数值模拟结果表明:在楔环连接结构的装配过程中,楔环带靠紧下件环形槽底面可有效减小下件连接部位处的应力。 第四章基于冲击动力学计算基本理论,开展小量级冲击载荷作用下楔环连接结构动特性的有限元数值模拟、理论分析与实验研究工作。建立楔环连接结构的三维摩擦接触有限元模型并利用实验结果修正模型,应用LS-DYNA3D有限元程序显式算法求解结构摘要的加速度响应。采用拟谐波平衡方法辨识计算冲击响应信号中包含的前几阶频率成分,结果表明:计算与实验加速度响应峰值吻合较好(法向加速度响应峰值计算与实验的最大相对误差为15.16%,切向加速度响应峰值计算与实验的最大相对误差为14.69%),计算曲线能反映实际响应信号的衰减趋势,且有限元时程响应分析考虑了接触状态的变化,因而更符合实际情况。此外,给出冲击载荷作用下楔环连接结构壳体轴向与周向单元以及楔环带小端部位单元的等效应力响应时程曲线,结果发现结构整体最大等效应力并未出现在冲击载荷作用位置,而出现在与冲击载荷作用位置位于同一经线上的上件连接部位的倒角位置处。 第五章综合利用振动系统动力学模型的近似求解方法和非线性模态分析方法,验证两种方法在研究结构振动响应的非线性特性上的一致性,开展楔环连接结构振动响应的非线性特性辨识研究。提出将等效线性化方法与Duffing模型相结合来共同进行模型参数的辨识,前者辨识出来的等效阻尼比用于后者以模拟结构的幅频响应,定量分析不同激振力幅值下结构刚度的变化,揭示结构刚度改变导致结构出现软非线性特性的力学机制,利用Duffing模型正确模拟和解释了结构振动响应中的不稳定和跳跃现象。 第六章基于结构振动传递特性,建立随机激励下楔环连接结构随机响应实验结果的理论预测模型。通过低量级随机激励下的振动环境实验,利用理论模型预测结构在相对较高量级随机激励下的响应,分析结构随机振动响应的非线性程度。研究结果表明:随机激励条件下,结构振动响应表现出明显的软非线性特性,对于相对小量级随机激励情形,理论预测与实验频谱曲线吻合较好。 第七章基于模态实验结果以及分析模态对结构参数的敏度分析修正楔环连接结构有限元模型,研究自由与固支状态下结构的模态,分析结构模态频率之间的内共振。应用LS一DYNA3D程序进行结构振动响应的数值模拟,比较6种定频激励条件下结构振动响应有限元计算与实验时间历程曲线,验证振动响应有限元计算的有效性。利用快速傅立叶变换(FFT)技术对结构振动响应的有限元计算和实验结果进行处理,分析定频激励条件下结构振动响应中的?

【Abstract】 Wedge-ring connection, has been gained some practical utilizations in some specific structures, such as torpedoes, mines, for such connection form, comparing with bolt connection, tube nipple connection, possesses some advantages of making connection surface of the shells smoother, case size smaller, additional mass lighter, connection structure tighter, assembly processing simpler and disassembling more convenient. Wedge-ring connection structure is a multi-deformable-body combined structure with its components contacting with each other, and the nonlinear factors in it are physical, geometrical, contact, clearance, dissipative, motive nonlinearities, which makes the mechanical behaviors of the structure far more complicated than linear ones. Consequently, to study and illustrate the mechanisms of the phenomena in nonlinear mechanics, to research the corresponding numerical calculating methods, not only have an important scientific significance for the development of mechanics, but also possess an important practical engineering value by supplying a theoretical support for the design and use of the structure. In this paper, the nonlinear static contact behaviors and dynamic characteristics of a wedge-ring connection structure are studied by theoretical analysis, finite element (FE) numerical simulation and experimental approaches. These studies span a wide variety of applications (form nonlinear static contact behaviors of the structure to nonlinear vibrations and shock response of the structure with contact feature), and solve a series of technical difficulties meeting with in the course of static and dynamic analysis of the structure (from parametrical identifications of a simplified single degree of freedom dynamic model to studies on the nonlinear static behaviors and dynamic responses of a three-dimensional (3D), multiple-component assembly featuring structure). Some important conclusions are obtained, and these conclusions give some available references for the theoretical analysis, numerical simulations and experimental studies of the wedge-ring connection structure and other similar complex structures, and provide some valuable technical supports for the design and use of engineering structures.Firstly, the developments of the nonlinear contact theory and the studying actualities are summarized, then the advances of the static contact behaviors, the FE numerical simulations of the vibrations and shock responses of the connection structures are simply introduced, the studies on the modeling and parameter identifications of the nonlinear systems are synthesized, and some previous achievements on the theoretical analysis, FE numerical simulations, experimental studies, and the designs and uses of the wedge-ring connectionstructure are surveyed and reviewed as well. The basic theories of nonlinear FE on the static contact questions are given in Chapter 2, the mathematical descriptions in the form of integral and the iteration equations in the discrete form of the contact equations are given.The mechanical behaviors of the wedge-ring connection structure with deformable contact under uniaxial tension load are studied by the methods of FE numerical simulations, theoretical analysis and experimental studies in Chapter 3. In the experimental studies, the strains are recorded using resistance strain gages, the in-surface displacements and off-surface ones of the connection location of the structure are measured using laser holography, and the load vs. total displacement curve is recorded by the measuring system of the MTS810 Material Test Machine. A 3D FE model with deformable friction contact of the wedge-ring connection structure is constructed for calculating the axial and circumferential stresses at the connection location of the structure, and simulating the breakpoint occurring on the load vs. displacement curve. The experiment and FE numerical calculations indicate that the quasi-symmetric property of the wedge-ring connection structure causes asymmetric deformation. The larger the axial loads an

节点文献中: 

本文链接的文献网络图示:

本文的引文网络