节点文献

强震活动主体地区形成机理的数值模拟研究

Formation of Main Regions of Strong Earthquakes: Mechanism and Numerical Simulation

【作者】 陶玮

【导师】 洪汉净;

【作者基本信息】 中国地震局地质研究所 , 固体地球物理学, 2003, 博士

【摘要】 许多学者(马宗晋等,1986;张肇诚等1994;洪汉净等,1994,1997;黄圣睦等,1996)通过对本世纪以来中国大陆及邻区强震活动的研究,逐渐认识到:在一定时期内,中国大陆及邻区内强震活动有相对集中的地区,称为强震活动主体地区,本文简称为主体地区;不同时期的主体地区在空间上有较大距离的转移与变换。强震活动主体地区体现了大陆内某段时期的应力状态。主体地区发生大范围迁移的时期约为十几年时间尺度,称为微动态期。不同时期的主体地区反映了大陆内应力场的快速变化。要解释这种应力场快速变化必须回答:动力来源、应力快速积累机制、影响应力场变化的主要因素等问题。 中国大陆内地震属于板内地震,有不同于板块边界地震的物理机制。中国大陆周围受到印度、太平洋和菲律宾海三大板块的联合作用,并且岩石圈结构复杂,具有横向和纵向不均匀性,这些因素必然影响大陆内的应力场分布,从而影响大陆内强震的活动,但是其影响方式和物理过程,都需要进一步的研究。本文从中国大陆动力学背景特征、应力在岩石圈中的传播特征、大陆岩石圈介质特征、前期强震活动对局部地壳的影响等方面进行较全面的计算和模拟,希望能较好地理解和探讨以上问题。 动力学分析表明,大陆周围的印度、太平洋和菲律宾海板块边界的活动是一个动态过程。通过推导常速度边界条件下应力在双层粘弹性模型中传播的解析解,本文分析论证了在周围板块边界动态作用下,应力可以通过岩石圈韧性层的作用,在大陆地壳内快速积累。从而证明板块边界的动态活动,可能是影响大陆内应力场快速变化的动力来源。本文又通过计算中国大陆的上、中、下地壳温度、粘滞性系数等值线分布,和地块的温度、粘滞性系数变化特征,分析了大陆内的介质分布特征,进一步理解了中国大陆的构造背景和孕震环境。从而证明大陆内介质的不均匀分布会在一定范围内影响应力集中位置。本文通过对大陆内强震释放应变能的分析和计算,做出各时期的强震释放应变能背景图,帮助分析前期强震对于局部大陆地壳的影响。 在以上工作的基础上,根据对大陆介质的计算,和各时期的强震释放应变能背景图,设计各时期中国大陆及邻区三维粘弹性非均匀有限元模型,根据板块边界的强震活动,量化各时期动态板块边界活动状况,作为不同时期的边界条件。首先模拟了板块边界的不同运动状况对大陆内活动块体边界上剪切力的影响,然后顺序模拟了中国大陆各期强震活动的剪切力变化情况,与大陆内相应时期的实际强震活动状况对应较好。验证了通过影响大陆内动态应力分布,进而影响强震活动主体地区的形成和迁移的主要因素为:(1)大陆周围板块边界的动态活动;(2)大陆内地壳介质不均匀分布;(3)前期强震对周围地壳介质的影响。并初步理解了强震活动主体地区的形成和迁移过程。 为进一步了解在太平洋和菲律宾海板块边界俯冲对中国大陆东部的影响,利用参考俯冲板块形态建立的中国大陆三维粘弹性非均匀有限元模型和俯冲诱发地幔对流模型,模拟出海洋板块的俯冲对大陆东部应力场产生的复杂影响,理解了大陆东部一些现象的物理机制,例如:由于俯冲作用,在大陆东部岩石圈内形成局部地幔对流;虽然受到海洋板块的西向俯冲,但在大陆东部边界附近却存在引张作用以及较大的东向运动;大陆东部地区出现挤压、引张、挤压作用相间排列的情况。一、对影响中国大陆应力场变化的重要因素的考虑和计算分析 地震是差异应力的产物,中国大陆内的6级以上强震多是构造强震。因此要理解强震主体地区的形成机制必须从了解大陆应力场入手。中国大陆及邻区处在印度、太平洋和菲律宾海三大活动板块边界之间,其应力场格局受到这三大板块活动情况的直接影响。通过对中国大陆强震的特殊动力学背景的分析,认识到大陆周围的板块活动并不是均衡的,而是不断变化中的动态过程,并且通过以前的工作认识到,印度板块边界的活动基本控制了应力场的主要格局,而太平洋和菲律宾海板块边界都会对大陆内部应力场产生重要的调整作用。 虽然强震绝大多数是发生在中、上地壳中,然而破碎的上地壳无法远距离传递应力,那么板块边界作用是如何影响到大陆深处的呢?又是如何在几十年甚至十几年的时间尺度内引起大陆内应力场分布发生较大变化呢?板块边界作用是作用于整个岩石圈深度上的,显然只考虑板块边界对地壳脆性层的作用是不合理的,在此必须考虑整个岩石圈的分层流变结构在应力传递中的作用。板块边界的运动是一个动态的过程,板块常以一定速度推进(如印度板块的推挤速度),而不是维持定常力作用在相邻的板块上,在这种情况下边界上的速度是常量。因此,本文在Kuszni:&Bott(1977)双层粘弹性岩石圈模型(上层粘滞性系数较大,下层粘滞性系数较小)的基础上修改模型,以速度作为边界条件进行模拟计算,给出解析解。并证明,如果给定两层模型的杨氏模量和各层的厚度比,则一F层所占厚度比越大,在上层中应力集中速度越快,可以极大的缩短应力积累时间。从而证明在板块边界连续动态作用条件下,地壳韧性层和岩石圈地慢在应力的传播和集中过程中起了很重要作用,岩石圈

【Abstract】 Studies (Ma Zongjin et al, 1986; Zhang Zhaocheng et al, 1994; Hong Hanjin et al, 1994, 1997; Huang Shengmu et al, 1997) on strong earthquake distribution in China and its vicinity have led to a recognition that the activities of continental strong earthquakes in China and its surrounding areas may concentrate in a certain active region during a certain time period. Hong Han-jing (1994, 1997) suggested that the seismic activities in China and its surrounding areas in the last century can be grouped into several micro-dynamic periods, while in an individual period the activity of strong earthquakes may be fixed in a main active region. Moreover, in different periods the patterns of strong earthquake distributions may vary significantly in space and the main active region of strong earthquakes may migrate for a long distance.The main regions of strong earthquakes reflect the quick change of the stress field in the Chinese continent. To explain this change some questions must be answered, they are: what is the driving force? How the stress immigrates and accumulates in the crust? And what are the main factors to affect the change of the stress field?Dynamic analysis demonstrates that the dynamic activities of the three surrounding plates, i.e. the Indian plate, the Pacific plate and the Philippine plate, affect the stress field in the China continent. However the cracked upper crust could not transfer the stress in long distance, and it could not help to explain the migration of the main regions of strong earthquakes. Therefore this work takes into account the rheological stratification of the whole lithosphere, and modifies the boundary condition of the two-layers visco-elastic lithosphere model of Kusznir & Bott’s (1977) to a constant velocity boundary condition, and gives the analytical resolution. When the two layers are assumed to be welded, the greater the differences of the viscosities and the ratio of the thickness between two layers are, the faster the stress concentrates in the layer with greater viscosity. The result shows that under the same boundary condition, if the accumulation of stress for one-layer homogenous model needs 950 years, then for a two-layer visco-elastic model (with the ratio of the two layers of 1/100 and the viscosities of 1018 Pa-s and 1022Pa-s, respectively), it needs only 38 years. The above results prove that the stress could be transferred from plate boundaries to the inner part of the continent and concentrates in the crust caused by creep in underlying ductile layers of the lithosphere.In order to understand the regional media of the China’s continent, the crustal heat production is inferred from seismic velocity (vp) by using the Cermak’s method(1982, 1989, 1995). The data needed are collected from several published geoscience transects, deep seismic sounding profiles and the three compiles of published heat flow data. The physical parameters for the active blocks in China, such as the viscosity, temperature and Young’s module for individual crustal layers are calculated, and the corresponding isoline maps of these parameters are compiled.The strain energy background map released from strong earthquakes before several periods is made using time, location and degree of the earthquakes as the function, to emphase the effect that earthquakes exerts on the properties of the crust.Based on the above analyses, a 3D non-uniform visco-elastic finite element model is set up to simulate the variations of the stress filed in the continent. In this model, diverse properties of media are given to the crust of the lithosphere according to the media calculations of the China’s continent. According to the earthquake activities on plate boundaries, the fluctuation of movement at plate boundaries is analyzed, and then the boundary conditions of the model are adjusted correspondingly according to the result. And the crust media are adjusted slightly to accord to the strain energy background released from the strong earthquakes before a certain time, which represents the effect that form

节点文献中: 

本文链接的文献网络图示:

本文的引文网络