节点文献

随机介质固热耦合数学模型与岩石热破裂数值实验

Random Media Solid-head Coupled Mathematics Model and Numerical Tests on Hot Cracking of Rock

【作者】 康健

【导师】 赵明鹏;

【作者基本信息】 辽宁工程技术大学 , 工程力学, 2004, 博士

【摘要】 众所周知,在高温环境下,岩石物理力学特性是一个极重要的问题。在石油的三次开采中,采用火烧油层的方法,降低油的粘度,同时诱发岩石破裂,达到提高储层渗透性的目的;高放射性核废料的深层处置,在相当长的时间,美国、法国一直致力于花岗岩岩层储存核废料,担心的就是岩石热破裂后,使核废料储存区域与地下水相通,最终危及人类生存环境,同时核贮库的围岩是吸收放射性核素并阻碍其迁移的最关键部分,其在高温作用下的长期力学性质及力学行为的演变规律对贮存库的选址、设计及长期安全性预测具有决定性的影响,是需要研究的主要问题之一;高温岩体地热资源开发中,从300℃C以上的高温岩体中,提取地热,由于温度降低,而产生热破裂;液体的地下储藏以及对地壳演变过程的研究和模拟中,所有这些,都迫切需要考虑工程围岩在高温下的物理力学性质和力学行为的长期演变规律。所以,研究在高温条件下岩石的破裂以及物理力学性质对高放射性核废料的深层处置、高温岩体地热资源开发等深部开采问题有着重大的实际工程意义。 目前岩石破裂数值实验研究仅限于在外力载荷下对岩石进行变形、破裂和物理力学性质的研究,在高温下对岩石的物理力学性质的研究又主要依赖于现场观测和实验室物理实验。现场观测对工程而言是非常必要的,但由于这种方法受到现场条件、人力、物力和财力的限制,在较大工程中难以充分发挥其作用。到目前为止,还没有对岩石的热破裂及其在温度作用下岩石的物理力学性质的数值实验研究。由于岩石材料的非均匀性、非连续性、以及几何结构的复杂性,现有的解析方法尚缺少有效的手段对此过程进行研究,很难对岩石的热破裂与物理力学性质的变化规律做相对准确的描述。因此,既考虑岩石材料的随机非均匀性,又考虑了固体变形场与温度场的耦合作用和数值实验节省经费、直观演示等特点,建立随机介质固热耦合数学模型以及有限元数值解法,采用数值实验方法来研究岩石热破裂问题具有更重要的理论意义和现实意义。为此,本文从岩石介质的非均匀性特征入手,在引入岩石非均匀性细观统计描述和物理学愈渗理论的基础上,主要的研究内容如下: 1.考虑岩石颗粒的物理力学性质的随机非均匀性,从理论上建立了随机非均质热弹塑性力学模型和随机介质固热耦合数学模型,并推导随机介质模型的有限元数值解法。这些方程与方法,奠定了岩石热破裂研究的基础。 2.对岩石随机介质的热弹性力学模型的平面轴对称问题和球对称问题分别进行了解析分析,提出了岩石物理力学参数作为随机变量在解析分析中的处理方法,并给出在随机指数分布和韦泊分布下的解析解;对随机介质固热耦合数学模摘要型的平面轴对称问题也求出了解析解,包括位移、变形和热应力的精确解。 3.在二维随机非均质热弹塑性力学模型和四种随机分布(均匀分布、指数分布、正态分布和weibull分布)下,在高温条件下,对热膨胀系数变化引起的岩石破裂门槛值温度的变化做了详细研究,揭示了岩石热破裂规律及门槛值温度随分布参数m的变化规律,得到了一致的结论:岩石热破裂门槛值温度随分布参数m的增加而升高,呈幂函数或直线关系;对岩石的力学性质进行了数值实验研究:包括门槛值温度随着弹性模量和泊松比的变化规律,采用正态分布和Weibull分布数值实验的结果与相应的实验结果相吻合;并再现了岩石热破裂的变化过程,表明文中所采用的数值实验的方法是可行和可靠的。 4.在平面随机介质固热祸合数学模型和三种随机分布(指数分布、正态分布和weibull分布)下,对岩石的热物理特性(包括温度分布随热传导系数和比热容的变化规律)、岩石的渗透率和热破裂细观机理进行了数值实验的研究。通过数值实验详细讨论和分析了由于温度和岩石的非均匀性的作用下岩石试件中的裂纹的产生、形成、扩展、汇合以及贯通过程的变化规律,从随机介质固热藕合方面揭示了岩石热破裂的本质。这为深部开采提供了可靠的理论依据,同时对岩土工程也具有一定的指导意义。 5.采用随机介质固热藕合数学模型,在正态分布、指数分布和Weibull分布下,对高温岩体地热开发人工储留层二次破裂进行了数值模拟,揭示了岩体温度场和应力场的特征和变化规律,同时直观地显示出人工储留层二次破裂随分布参数m和时间变化的全过程,并表明热膨胀系数的概率分布形式对岩体热破裂规律有重要影响。 本文的研究有以下创新点: 1.提出非均质岩石随机变量及随机概率的概念,考虑岩石物理力学性质为随机变量,建立了三维随机介质热弹塑性力学模型和随机介质固热祸合数学模型。 2.在这两种模型下分别推导出非均质有限元数值方法。 3.在平面随机介质热弹性力学模型和随机介质固热藕合数学模型的轴对称问题的解析分析中,提出了岩石物理力学参数作为随机变量在解析分析中的处理方法,并给出了解析解。 4.通过数值实验的方法详细地研究岩石热破裂随概率分布形式和分布参数m的变化规律。 5.开发了二维随机介质固热祸合数学模型的岩石热破裂数值实验软件。 6.在实际工程中,对高温岩体地热开发人工储?

【Abstract】 As is known, in environment of high temperature, physical properties of rocks are crucial important, In tertiary oil recovery, the in-situ combustion method is adopted to decrease the viscosity of oil and induce rock cracking, then the permeability of the reservoir is increased. Deep geological disposal of high-level radioactive waste(HLW) is a study focus of America and France. They pay their attention to disposal of HLW in granite reservoir, but the question is that after thermal cracking, the area of HLW may be connective to the groundwater, which threats the living environment of human beings. Simultaneously, the surrounding rock of HLW disposal repositories, the key part of which absorbs the radionuclide and retard its transport, changes its mechanical properties and mechanical behavior in high temperature, which possesses crucial effects on the location choosing, design, and safety prediction of HLW disposal repositories, and it is one of the majors of study. In the exploration of geothermal, geothermal is gotten from hot rock above 300 ℃. Because of the decrease of the temperature, rock cracking happened. In addition, the underground deposition of fluid, the study and simulation of crust evolutionary process are relative to rock cracking study, and the physical mechanical properties of rock change under high temperature. So it has important engineering value to study the effects of hot cracking and changes of rock physical mechanical properties to deposition of HLW, exploration of geothermal and other deep exploration questions. At present, rock cracking numerical tests are often limited on deformation, cracking and physical properties of rock, and the studies on physical mechanical properties of rock mainly depend on in-situ observation and experimental test. In-situ observation is necessary to engineering, but it is often limited by field environment, personnel and finance, so it is not much effective. Up to now, numerical tests of rock hot cracking and rock physical mechanical properties are not studied. Because of the non-homogeneity, non-continuum and complexity of geometry structure of rock, the analysis methods lack of effective technique to describe this question exactly. The coupled mathematical model and its finite element numerical equations of random media are established considering the random non-homogeneity and the coupling effects of deformation, temperature, and the numerical tests’ simpleness. It provides important theory and practical values to adopt the numerical tests. In this paper, from the point of non-homogeneity of rock, the micro-structure statistical characterization and penetration theory on physics are introduced to study the following contents.1. Considering the physical mechanical properties’ random non-homogeneity, the thermoplastics model and coupled solid-thermal numerical model of random media are established and the finite element numerical method is educed. The equations and the methodsare basis of the study of rock hot cracking.2. The plane axis-symmetrical and spherical axis-symmetrical questions of random media’s thermal-elastic model is analyzed, the technique of rock physical mechanical parameters as random variables is provide, and the analysis solutions are attain under the distributions of Gauss, Weibull and index, hi addition, the solution of random media’s plane axis-symmetrical solid-thermal mathematical model, including displacement, deformation and thermal stress.3. Under the four random distribution (Uniform, Gauss, Weibull and index), 2-D random non-homogeneity thermoplastics-plastic model and high temperature, the effluence of thermal dilatability on thermal cracking law and temperature threshold is studied in detail, and the result provides the rock thermal cracking law and temperature threshold changing with the changing of distribution of parameter m and some conclusions are obtained. Hot to break threshold up to and distribute parameter rise by the increases of m by value temperature rock, Present power function or the straight line rela

节点文献中: 

本文链接的文献网络图示:

本文的引文网络