节点文献

近地卫星自主轨道确定和控制系统研究

Study on the Autonomous Orbit Determination and Control System of Near Earth Satellite

【作者】 赵黎平

【导师】 周凤岐; 周军;

【作者基本信息】 西北工业大学 , 导航、制导与控制, 2002, 博士

【摘要】 卫星的完全自主导航是我国航天控制发展的挑战性课题。本文主要研究了卫星导航滤波器的设计及其在自主导航中的应用;对姿态敏感器用于卫星自主导航进行了有益的尝试;研究了一种轨道机动的解析方法。本文主要的研究工作如下: 1.通过一个新变量的引入,研究了一种全新的位置矢量和速度矢量的表达式,并推导了基于这种表达方式的状态偏微分,得到了计算卫星任意时刻位置矢量和速度矢量相对于初始位置与速度矢量偏导数的统一闭形算法。研究了近地轨道卫星需要考虑的三种形式的摄动,建立了对地观测卫星的轨道动力学模型。 2.对推广卡尔曼滤波器的线性化误差和计算量进行了分析。以推广卡尔曼滤波算法为基础,为提高滤波新息的修正能力,在一般情况下从理论上研究了一种改进的推广卡尔曼滤波修正算法,并且证明了此算法所具有的两个基本定理。分析表明,该算法能够提高精度,防止滤波发散,但计算量有所增加。 3.本文对离散周期线性系统的自适应滤波器进行了研究,给出了滤波算法,接着把此算法推广到具有标称轨线的周期非线性系统,给出了相应的周期增益的自适应滤波算法。同时,从实际应用的要求出发,对周期线性系统序贯递推形式的参数辨识算法进行了修正。修正的参数辨识算法对于时变参数具有一定的跟踪能力。周期系统的推广卡尔曼滤波算法,实现了系统状态滤波与系统参数的联合估计,并且在线计算过程简单,与卫星自主系统星上数据处理的实时性要求相一致。 4.研究了一种新的基于磁强计大小测量的卫星导航方案。同时通过一种新颖的状态变量的应用,使本文提出的方法克服了把地磁场看成矢量时复杂的坐标转换,也使所建状态模型比较简单。最后通过使用模拟数据仿真,取得了初步结果,证明了该方法的有效性和实用性。 5.研究了一种利用星敏感器进行卫星轨道确定的自主导航方案。这种自主导航方案完全利用高精度的CCD星敏感器,以及大气对星光折射的数学模型及误差补偿方法,精确敏感地平,从而实现航天器的精确定位。理论分析和实际计算表明:应用该方法可获得较高的定轨精度;星光折射角的测量误差和大气折射模型的不确定性是影响导航精度的主要因素;随着星敏感器精度的降低,位置误差近似线性增长;当观测星的数目大于40颗时,定位误差的变化趋于缓和。 6.基于二体问题,根据卫星轨道运动的周期性,提出了把轨道优化问题分 西北工业大学搏士学位论文 扬要成内部问题和外部问题两个子问题,把开普勒轨道要素分为“快”变化量和“慢”变化量来研究的方法。 本文创造性的研究成果是: 1.提出了一种新的基于磁强计大小测量的卫星导航方案。同时通过一种新颖的状态变量的应用,使本文提出的方法克服了把地磁场看成矢量时复杂的坐标转换,也使所建状态模型比较简单。 二.基于二体问题,根据卫星轨道运动的周期性,提出了把轨道优化问题分成内部问题和外部问题两个子问题,把开普勒轨道要素分为“快”变化量和“慢” ___一.变化量来研究的方法。此研究方法大大降低了系统的阶次,更加易于实现。 3.针对一种改进的推广卡尔曼滤波修正算法,证明了两个基本定理。该改进算法有利于防止滤波的发散,提高滤波的精度。

【Abstract】 Orbit determination and control is an old topic and mature field in celestial mechanics. Meanwhile, It’s the essential part of the satellite navigation. For China, the idea of autonomous satellite navigation is an attractive and challenged subject.The main objects of this dissertation are to develop state estimation theories and establish a united frame for the satellite autonomous navigation. Furthermore, the problem of minirnum time orbit transfer in strong central gravitational field is also studied. The major ideas in the dissertation are summarized as follows:1.Based on the introduction of a new variable, completely general closed-form solutions are given for both the rectangular coordinates of the two-body problem and their partial derivatives with respect to their initial values. The complete generality and simplicity of the solutions make them valuable for many practical applications of the two-body problem.2.Based on the algorithm of Extended Kalman Filter(EKF), the errors resulted from linearization are analyzed qualitatively and some useful conclusions are abtained. Then computation capacity of EKF is studied. The key to reduce the algorithm computation capacity is to simplify the computation of filter’s gain matrix.3.hi order to avoid divergence of EKF, we proposed a modified EKF algorithm and prove two basic theorems. The new algorithm improves the corrective capability to new information. Moreover, the computation capacity is not more complicated than that of EKF.4. Adaptive filtering algorithm of discrete linear periodic system is studied. Then we extend the algorithm to the nonlinear system with a periodical nominal trajectory, and a navigation filter is developed with the algorithm. Finally, from requirements in practical application of nonlinear system, we modify the parameter identification algorithm of linear periodic system to keep the parameter tracking ability.5. An approach of autonomous navigation for low earth orbit (LEO) satellites using magnitudes of the geomagnetic field is presented. A novel set of the state vector make the derivatives of the model with respect to the state vector easy to solve. At last, simulation for a sun-synchronous orbit satellite is done, and the effectiveness andpracticality of the autonomous navigation method using the magnitudes of geomagnetic field vector have been shown. The navigation system designed with the method possesses the advantages of the inexpensive hardware and the simple algorithm, and can satisfy the moderate accuracy requirement of LEO satellites or be a redundant system.6. An approach of autonomous navigation for satellites is described in this paper by using refraction measurements of starlight passing through the upper atmosphere. An Extended Kalman Filter (EKP) has been designed to estimate the satellites’ position and velocity. Simulation for a sun-synchronous orbit satellite is executed. The results show that the satellite’s position accuracy is about 0.038km. Moreover, results show that the measurement error of starlight refraction angle and the uncertainty of the atmospheric refraction model are two principal factors responsible for deteriorating the navigation accuracy.7. Minimum time constant thrust orbit transfer in strong central gravitation field is studied. For the purpose of optimal thrust direction determination, Pontryagin’s Maximum principle is combined with the motion equations of spacecraft. Next, the problem of optimal trajectory construction is divided into two subproblems. The first one is named the ’inner’, hi this case, slow variables have small enough changes that it is possible to linearize the inner problem and obtain its analytic solution, hi turn, the second subproblem is named the ’outer’. This one is to determine the dynamics of slow variables, considered as the functions of the number of the revolution.The major contributions of this dissertation are:1. An approach of autonomous navigation for low earth orbit (LEO) satellites using magnitudes of the geomagne

节点文献中: 

本文链接的文献网络图示:

本文的引文网络