节点文献

液体中微机器人的运动机理与实验研究

Locomotion Mechanism and Experimental Research on Micro Robot in Liquid

【作者】 谭湘强

【导师】 杨宜民;

【作者基本信息】 广东工业大学 , 控制理论与控制工程, 2002, 博士

【摘要】 应用于微小管道的微机器人一直是微机械电子技术的一个研究热点。它主要包括工业管道微机器人和医用人体管道微机器人。管道微机器人能够在微小的工业管道内从事检测和维护作业,可以进入人类无法进入的狭窄空间或危险区域,如航天飞机、导弹、核动力工厂等微细管道内从事电缆布线,管道的检查维护。但是,微管道机器人多是利用摩擦机理运动,存在易损坏管道内壁等缺陷。另外,由于管道内壁情况复杂,机器人的运动也难以控制。因此,基于这一问题人们探索着新的解决方法。 本论文从模拟自然界生物运动仿生学的角度出发,主要借鉴鱼类和鞭毛原生动物的推进机理,致力于研究与设计在液体中运动的微机器人。随着本研究的进一步深入,它能为进入人体内,从事体内检查、定点投药和从事局部手术的医疗微机器人的研究提供研究基础。本论文得到国家自然科学基金项目“泳动微机器人的机理、机构和控制”(项目资助号:69885002)、广东省自然科学基金项目“液体中泳动微机器人的研究”(项目资助号:980402)和广东省教育厅基金项目“基于流体自身能量的微管道机器人研究”(项目资助号:010043)的资助,主要对液体中微机器人的国内外研究现状和主要研究问题、鱼类推进机理、液体中微机器人的设计与运动机理、低雷诺数粘性液体中仿鞭毛推进微机器人研究等方面进行了大量的理论与实验研究。本论文主要工作和有关的创造性成果如下: 首先,本文在大量阅读国内外文献的基础上,国内首次对液体中运动微机器人的研究现状和主要研究问题进行了深入分析,为国内对液体中运动微机器人的进一步的研究与实现奠定了坚实的基础。 本文分析了鱼类推进模式和推进机理。主要阐述了鱼类推进模式的分类及特点、鱼的形态描述及受力分析,并重点论述了鱼类波状推进机制,并对当前仿生鱼型水下机器人的研究现状、基本特性和应用前景进行了分析。上述内容的研究对液体运动微机器人的研究具有重要的借鉴和指导意义。 本文在综合国内外鱼类游动文献中的有关研究成果的基础上,分析了鱼类游动过程中鱼体和尾鳍运动,建立了月牙尾推进模式稳态游动的运动学模型。利用尾鳍和摆翼运动特征的相似性,建立了摆翼运动模型,同时利用Matlab软件进行了摆翼的运动仿真,并重点探讨了摆动—平动相位差对摆翼运动的影响。仿真结果验证了数学模型的正确性和可靠性。然后,基于鱼类肌肉水动力学的研究,对摆翼所产生的推进力进行了分析。 广东工业大学工学博上学位论文 本文阐述了柔性铰链和差式微位移放大机构的基本设计原理,分析了机构中位移损失的原因。基于差动杠杆原理和柔性铰链结合起来设计了液体中运动微机器人的主体机构,并利用有限元法对主体结构的放大性能进行了仿真,所研制的放大机构具有较好的放大效果。采用片状柔性铰链成功地解决了由于机构中的位移干涉造成的机构内部反力太大的问题。 本文设计了PZT驱动的液体中微机器人的控制装置,在液体中进行了微机器人的初步实验。实验结果表明:(1)液体中微机器人的主体结构设计是合理的; (2)通过改变电源频率可控制微机器人的泳动速度。()通过改变施加在两个压电元件上的驱动电源频率C和G,可控制液体中运动微机器人运动方向。 最后,本文以原生动物(如细菌等)、精子运动为原型,在探讨鞭毛推进的生物和流体力学机制的基础上,提出了一种低雷诺数粘性流体中仿鞭毛摆动推进的微机器人原型,并对其运动学进行了研究,同时对微机器人所受粘性力的简化计算公式进行了推导。

【Abstract】 The study on micro-pipe robot is a,research spot in MEMS. It mainly includes industry micro-pipe robot and medical body micro-pipe robot. Micro-pipe robot can be used to deal with inspection and maintenance in the industry micro-pipe in which, such as space aircraft, missile, nuclear power factory due to its narrow or dangerous region for the people no way. to enter. The above micro-pipe mostly scathes inner pipe wall based on its friction locomotion mechanism. In addition, the micro robot is difficult to be controllable in the complicated shape of inner pipe wall. So the relative researcher make great efforts to explore new method.From the view of bionics to imitate biology motion in the nature, This dissertation is devoted to study and design micro mobile robot in liquid by the help of propulsion mechanism of fish and flagella protozoa. It is believed that it can bring the important inspiration for the future medical micro robot which can be embedded into inner organ of human for inspection, drug spot deliverance and local body surgery. Supported by supported by the Nation Nature Science Foundation of Mechanism, Structure and Control Study on Swimming Micro Robot in Liquid (Item No.69885002) and Guangdong Province Science Foundation of Research on Swimming Micro Robot in Liquid (Item No. 980402) and Guangdong Province Education Department Foundation of Research on Micro Pipe Robot driven by liquid Self Energy(Item No. 010043), this dissertation mainly deals with much theoretical and ,including research situation and the main issue of micro mobile robot in liquid, fish propulsion mechanism, design and locomotion mechanism, and flagellum-like propulsion swimming micro robot in low Reynolds number viscous liquid. The main contents and related original achievements are as follows:First, this dissertation deeply analyzes the research situation and the main issue of micro mobile robot in liquid on the basis of a lot of the domestic and foreign documents to be referred. So great benefit will be brought the civil scholars which are interested to engage in their further research for it.This dissertation discusses fish propulsion mode and mechanism. Fish undulatory mechanism is deeply investigated, besides the kind and specialty of fish swimming mode, fish morphologic description and force-acting analysis. In addition, thedissertation reviews the current situation, fundamental characterization and application forehead for underwater biomimetic robot, So the above contents bring great reference for micro mobile robot in liquid.This dissertation sets up the kinematics model on the basis of the biomimetic study of lunate-tail propulsion steady swimming fish and of the analysis of fish body motion and caudal fin motion. Further, driving fin motion model is setup and simulated using Matlab, the relation of phase difference between feathering and heaving motion to caudal fin is deeply analyzed. Simulation shows that the proposed model is correct and reliable. Then, based on the study of fish muscle hydrodynamics motion, the propulsion force produced by driving fin is analyzed.This dissertation explains the fundamental design principle of flexure hinge and differential micro-displacement magnification structure, and investigates the reason for the structure displacement loss. The main mechanism is designed based on differential lever theory and flexure hinge, its magnification performance is simulated using finite element method (FEM). The simulation result shows that the main mechanism owes good magnification performance. The utilization of strip flexure hinges successfully solve the problem that the interior anti- force is too large in the mechanism.Preliminary experimental research is carried out using the designed control device driving the micro robot in liquid. Experimental research shows that, the designed main mechanism is reasonable; swimming velocity varies with the frequency exerted on; steering motion can by realized by changing the frequency f, and f2 of control power which exerts on two PZ

节点文献中: 

本文链接的文献网络图示:

本文的引文网络