节点文献

地壳变形的突变性与地震短期预报

【作者】 牛安福

【导师】 贾民育;

【作者基本信息】 中国地震局地球物理研究所 , 固体地球物理, 2000, 博士

【摘要】 地震短临预报是及其困难的科学问题之一,尽管国内外地震学者们开展了大 量的工作,但取得的实质性进展不大。因此,深入地震孕育过程研究、探索地震 短临预报新方法是一项富有挑战而又艰巨的任务。 突变是指系统在短时间内发生的巨幅变化。在许多重大地震前,都能观测到 这一现象,因而,突变可能是地震的重要前兆。为研究地壳变形突变与地震的关 系,本文从以下四个方面进行了深入的工作:(1)根据近一、二十年来的大量实 测资料分析重力、形变、地下流体等在中强地震前发生的突变性异常现象及其特 征,着重研究它们在时空域内的差异性及其联系,为进行机理研究和地震短期预 报提供了基础。(2)从岩石破裂试验的本构关系、地震破裂成核模式出发,结合 地壳变形的突变性异常特征初步研究了突变性变形的机理。(3)提出了识别突变 性前兆异常的定量化方法和指标,它将在同一测点进行的多项观测依据彼此之间 的相关性构造了新的统计量,从而提高了异常识别的信度。(4)在总结前人经验 的基础上,结合上述研究成果,提出了地震三要素短期定量预测的新方法,并进 行了预报实践,取得了令人鼓舞的效果。 该文取得的进展和结论主要包括: 1) 提出了异常强度的概念,为前兆异常的定量判别提供了一技术途径。 地壳变形观测异常包括了有震异常和无震异常,有震异常即为前兆。通过观 测如何发现前兆性异常,是目前地震研究的难点之一。本论文借助正常动态过程 的基本属性首先研究了各测点变形异常的定量化问题。 借助异常强度AF值的概念,本论文探讨了强地震前后变形异常与地震活动 关系的差异性,从而得到了识别强地震危险性的一重要判据,即变形异常与地震 活动性关系的改变。 当局部(个别观测点)出现变形异常之后,若短时间内即有中等强度地震发 生,这种条件下发生强地震的可能性较小;反之,若检测到区域性变形异常,而 地震活动未有明显增加,该地区则有强地震孕育的可能性。当检测到其中有变形、 地下流体发生突变现象时,则应注意短期内发生强地震的危险性。 在各种复杂的异常现象当中,突变性异常是最主要的前兆性异常。地震震级、 地点通过突变性变形的特征可得到一定程度的定量估计。 2) 深部物质非均匀运动引起的裂纹位错扩展可能是突变性变形前兆现象发生 的重要原因。 对强地震前重力、地壳变形和流体突变性异常发生时刻差异性、相关性异常 分布特征研究的结果表明:地幔物质的非均匀运动,引起地壳内部非均匀变形、 微破裂失稳;破裂扩展及生长(蠕动),并在临震前后诱发流体等参数的突变。 因此,地震形成的动力过程可能包括三个重要阶段:在初始时刻T1、深度为H1 时首先出现无扩展能力的裂缝位错(或静力位错);其后是裂纹位错的准静态扩 展或破裂成核阶段.在裂纹位错向地表扩展过程中,由于象力的作用速度逐步加 快,在速度达到波速(即地震)之前T2,破裂扩展到深度为H2的岩石层中;最 后是地震发生或同震变形阶段,当裂纹扩展速度能有效地克服扩展途中遇到的坚 1硬障碍体或断层闭锁段,并引起局部运动时,则可能触发地震。 在这整个孕育过程中,裂纹准静态扩展或无震滑动的持续时间是一重要的特征参数,它与裂纹开始扩展的起始、终止深度密切相关。自裂纹位错开始失稳到准静态加速扩展过程中,通过测量地表变形即可能检测到一定幅度的异常,变形异常的持续时间与准静态扩展时间是接近的。由裂纹准静态扩展时间t的表达式可知,裂纹准静态扩展时间与裂纹贯通尺度相关,因此未来地震震级M与突变性变形异常的持续时间T(天)有一定的相关性。对震前倾斜突变持续时间与地震震级的对比研究得到: M。1.36logT十3厂86 在地震破裂裂纹准静态扩展过程中,前兆场特征具有差异性。从异常幅度来看,在临近地震前,异常的幅度越来越大,特别是在震源区附近。从异常的空间分布来看,若在较大面积、较多的测点上观测到同步突变性变形异常,则震源可能较深、震级可能较大。3)对突变性前兆变形与地震地点和地震震级之间的联系进行了定量分析,给出 了地震孕育过程中伴随降维现象的证据。 岩石破裂模拟试验、地震危险性演化过程和地震破裂成核等模式都表明,在地震破裂裂纹准静态加速扩展到波速(地震)之前,伴随着显著的失稳、预位移 (或预滑动)、裂纹生长和蠕动现象,从而导致突变性前兆现象的发生。 在现有前兆观测能力下,突变性变形异常点距震中的距离D主要集中在200ho范围内,其信度达95%。 利用突变性倾斜异常量二可得到较为确定的地震震级范围预测,并可使震级模拟预测的最大误差控制在0.25级左右。因此,这一模型具有重要的预报意义。

【Abstract】 Short-term Earthquake Prediction (SEP) has been regarded as a difficult and complexscientific problem. In the past half century although seismologists over the worldhave done many works on SEP, there is no any significant gain with it. So the deeplyresearching for earthquake preparation, and exploring new way for SEP are importantand challengeable task.Based on the observed deformation data accumulated for many years, on resultsfrom experimental rock rupture in laboratory and on model of earthquake nucleationprocess, this paper have studied the relationships between deformation and seismicactivity And so did with earthquake preparation model, quantitative models amongthe Rapid Changes (RC) in deformations and earthquake 3-factors, methods forprediction and some concerned problems. Finally, some important achievements inearthquake preparation model and in SEP have been drawn as follows.l) The proposed concept of anomaly intensity gives a possible way to identifyanomaly scientifically.This concept of anomaly intensity based on the Fisher test method gives a probabilityto describe the anomaly property for a natural process.Analyzing anomaly intensity AF varying in an area, the differences ofrelationships between observed anomaly and seismic activity around a strongearthquake have been discussed, and an important precursor has also been found thatis the change in relationship between deformation anomaly and seismic activity.Among these anomalies the RC is obvious one.2) The RC may be caused by the pseudo-static accelerate propagation of fracture thatdriven by the inhomogeneous movement of deep masses.The differences among moments of RC in gravity, in crust deformation, and in ground water leveland the area of relative anomalies have demonstrated that the inhomogeneous movement of deepmasses may cause deformation, fracture instability, fracture rapid propagation and growth (creep).And the RC in ground water level will be founded by observations around ruPtUre fOrmed.So the earthquake preParing process may be divided to three stages: The initial crackdislocation (static) occurred in deep H1 at Tl moment. Then the crack dislocation began toaccelerae growth uP to the crust surface, while the crack propagation accelerates closed to thewave yelocity in deeP H2 at T2 moment. Finally while the dislocation could yet be propagated alocked fault zone or a jog met in the propagation direction, so an earthuake may be triggered.The dutalion from deeP Hl to deeP H2 can be aPproxinded.,The surface RC defOnnaion can be detected during all the process of pseudo-staticprOPagation. And its dUration is closed to the propagation period. FrOm the formula above,duration T is related to the scale of cormected fractUre. So the forecasted earthqake hasmagnitUde depending on the duraon days. As an examPle, comPared the duraon T of the tilt RCwith the maghtUde M we got the form1a:M=1 .36 log T (davs)+3.786M=1 .36 log T (davs)+3.7863) The reIation betWeen precursory RC and source/magnitude is estabIi8hed, anda proof of reducing dimension accomPanied with the earthquake preparationprocess is given. -The characters of deformation precursor field are differen in these RC proceSsqs. Thecloser the occurrence or source, the higher the amPlitude of RC is. The larger thearea with RC, the deePer the focal depth is and the greater the maghtude will be.The ePicener distance D from the sites of RC is withen 200bo with 95% cdrtaintyThe ti1t RC axnPlitude can give a more certainy prediction on the range of maghtudeM with maximum error 0.25 degree that makes the model a sighficat practice valuefor predicting the magnitUde or establishing the re1ation betWeen defOrmation andearthquake or analyZing the risk sitUation after an endquake.M= 0.57 log D bo + 1.l4 log I (grad+ ll.87This mode1 certified RC in deformation is inhomogeneous. AssUming theePicater disfore D, is constan, the formulation ofmaghtude M relat

节点文献中: 

本文链接的文献网络图示:

本文的引文网络