节点文献

多功能纳米复合材料的制备、表征及其光、磁、传感等性能的研究

Synthesis, Characterization, and Studies of Multifunctional Nanocomposites with Magnetic, Optical, and Sensing Features

【作者】 王岩岩

【导师】 李斌;

【作者基本信息】 中国科学院研究生院(长春光学精密机械与物理研究所) , 凝聚态物理, 2014, 博士

【摘要】 作为纳米科学的基础,纳米材料既是纳米研究领域中极具活力和最为贴近实际应用的部分;同时作为化学、物理、生物、医学、信息等多学科交叉融合与发展的重要物质基础,它也是对未来社会与经济的发展最具影响力的部分。为了适应不同领域发展的要求,纳米材料研究的内涵和领域也在被不断地扩大和拓宽。近年来,复合化、低维化、智能化的多功能纳米复合材料受到了人们广泛的关注。这种材料既具有纳米材料的特殊性质,又能在保持功能材料原来物理、化学特性基础上,将不同材料所拥有的功能有机地结合在一起,赋予复合材料优化的光学、电学、磁学、生物学等性质;它能够充分发挥功能材料和纳米材料的优势,因而成为在生物、医药、化工、环境、能源等领域最具发展前景与应用潜力的纳米材料之一。本论文瞄准这一重要的研究方向,从功能材料和纳米复合材料的设计合成入手,围绕多功能纳米复合材料的制备、表征及其光、磁、传感等性能开展了一系列的研究,取得的主要研究成果如下:1.通过溶剂热法、溶胶-凝胶法和表面活性剂模板法合成出具有核壳结构的磁性介孔二氧化硅纳米复合材料(MMS),并利用共价嫁接技术将设计合成的荧光化学传感材料芘的衍生物(Py-OH)与其进行组装,制备成一种新颖的多功能纳米复合材料(MMS-Py)。该复合材料对汞离子具有好的选择性、短的响应时间和高的灵敏度,其检测限可达1.72ppb,低于EPA允许的饮用水中汞离子的浓度限值2ppb。复合材料对汞离子的检测具有可逆性,可实现多次重复使用,其荧光传感信号在较宽的pH范围稳定。另外,复合材料可作为吸收剂通过简单的磁分离技术快速有效的移除样品中的汞离子。这种多功能纳米复合材料有望应用于简便快捷的检测和移除环境、生物等样品中的汞离子。2.采用简单的基于溶液的方法将设计合成的光学氧传感材料钌(II)二亚胺配合物通过共价嫁接的方式固载到具有核壳结构的磁性介孔二氧化硅纳米复合材料(MMS)上,制备出一种新型的多功能纳米复合材料(Ru(bpy)2Phen-MMS)。获得的复合材料具有强的超顺磁性,高度有序的介孔结构,能够发出明亮的红光;同时表现出良好的光学氧传感性能,具有可实用化的灵敏度(I0/I100=5.2),短的响应及还原时间(t↓(s)=6and t↑(s)=12)以及好的Stern–Volmer关系曲线(R2=0.9995)。此外,该复合材料具有好的稳定性和重复使用性。多功能纳米复合材料优异的磁性、介孔、发光和氧传感性质使其在环境监测和生物传感等方面具有良好的发展前景与应用潜力。3.首次利用无孔二氧化硅包覆的四氧化三铁纳米粒子作为核,对氨基偶氮苯的衍生物(Azo-Si)作为溶胶-凝胶的前驱体,正硅酸乙酯(TEOS)作为硅源,十六烷基三甲基溴化铵(CTAB)作为模板剂成功通过共水解-聚合的方法制备了具有靶向运输和光控释放性质的多功能纳米复合材料(Azo-MMS)。这种制备方法简便、节能、环保。获得的复合材料具有高度有序的六方相介孔结构,强的超顺磁性和光刺激-响应性质,可以作为一种良好的载体材料用于负载、运输和释放客体分子。在450nm可见光的照射下可以触发复合材料将负载的罗丹明6G释放出来;通过光刺激的―开关‖可实现对罗丹明6G释放量和释放时间精确控制。此外,复合材料能通过外加磁场实现对罗丹明6G的靶向运输并在指定位点实现对其的光控释放。作为靶向可控释放载体的多功能纳米复合材料同样适用于药物分子布洛芬,显示出在药物传输系统方面潜在的应用价值。

【Abstract】 Nanomaterial, as the basis of nanotechnology, is the most dynamic element inthe research and is very promising for practical application. It is not only the mostinfluential part for the future social and economic development, but also animportant material foundation for interdisciplinary fusion of physics, chemistry,information technology, biotechnology, medicine and other fields and their furtherdevelopment. The research area and connotation of nanomaterial has beencontinuously expanded. Multifunctional nanocomposites with low-dimensional andintelligent features have received considerable attention in recent years. They notonly have the special properties of nanomaterial, but also can acquire optimizedoptical, electrical, magnetic, and biological properties by combining the respectivefunction of different component organically, and meanwhile keep their originalphysical and chemical characteristics maintained. They have the advantages of boththe nanomaterial and functional material, so they have become one of the mostpromising materials, and exhibit great potential in many applications, such asbiology, medicine, chemistry, environment, energy and other areas. Aiming at thisimportant research direction, we start from the design and synthesis of functionalmaterials and nanocomposites. Surrounding the multifunctional nanocomposites, this dissertation presents a systematic research about their synthesis and characterizationas well as magnetic, optical, and sensing performance. The major achievementobtained is as follow:1. Core-shell magnetic mesoporous silica nanocomposites were prepared bysolvothermal reaction, sol-gel technology and surfactant template method. Thennovel multifunctional nanocomposites were fabricated by covalent coupling of thedesigned pyrene-based receptor within the channels of magnetic mesoporous silicananocomposites. This multifunctional nanomaterial shows excellent fluorescencesensing properties that allow for highly sensitive and selective Hg2+detection. Adetection limit of1.72ppb is obtained, which is sufficient to sense the Hg2+concentration in drinking water with respect to U.S. EPA limit (~2ppb). Thefluorescent sensing responses for Hg2+are reversible and stable over a broad pHrange and MMS-Py demonstrates its excellent recyclability. Moreover, MMS-Pyexhibits high performance in convenient magnetic separability, and can be used as anabsorbent for fast and efficient removal of Hg2+. This multifunctional nanocompositemay find potential applications for simple detection and easy removal of Hg2+inbiological, toxicological, and environmental areas.2. A novel multifunctional Ru(bpy)2Phen-MMS microspheres weresynthesized by immobilization of the as-prepared Ruthenium(II) polypyridylcompounds into the channels of magnetic mesoporous silica nanocomposites (MMS)using a simple solution based method. The well-designed multifunctionalnanocomposites show superparamagnetic behavior, ordered mesoporouscharacteristics, and exhibit a strong red-orange metal-to-ligand charge transferemission. Meanwhile, the obtained nanocomposites give good performance inoxygen sensing with practical sensitivity (I0/I100=5.2), short response/recoverytimes (t↓=6s and t↑=12s), and good Stern Volmer characteristics (R2=0.9995). In addition, they exhibit good stability and reproducibility. The magnetic,mesoporous, luminescent, and oxygen-sensing properties of this multifunctionalnanostructure make it hold great promise as a novel oxygen-sensing system for environmental monitoring and biosensor.3. We have demonstrated a successful synthesis of azobenzene functionalizedmagnetic mesoporous silica nanocomposites (Azo-MMS) with targeted delivery andlight-controlled release property for the first time, which was simply constructed byusing the nonporous silica coated Fe3O4as the core,4-phenylazoanilinefunctionalized hydrolysable compounds (Azo-Si) as the sol gel precursor,tetraethoxysilane (TEOS) as the silica source, and cetyltrimethylammonium bromide(CTAB) was selected as the organic template for the formation of the outermesoporous silica layer. This synthetic procedure is fast, simple and low cost. Theobtained nanocomposites possess ordered hexagonal mesopores, superparamagneticand light-responsive properties. The nanocomposites can be used as an effectivecarrier for loading and releasing the cargo molecules. Irradiation with visible light(450nm) triggers the release of Rhodamine6G loaded in the mesopores, and thenanocomposites enable remotely controlled release of the cargos―on-off‖at will.Additionally, we have shown the feasibility of using this composite as a targeteddelivery system by external magnetic field. This composite was also applied to theloading and controlled release of ibuprofen (IBU), demonstrating its potential forapplications in drug delivery

节点文献中: 

本文链接的文献网络图示:

本文的引文网络