节点文献

集成电路随机缺陷成品率预测技术研究

Research on Random Defect Yield Predicting Technique for Integrated Circuits

【作者】 朱椒娇

【导师】 何乐年; 史峥; 罗小华;

【作者基本信息】 浙江大学 , 电路与系统, 2013, 博士

【摘要】 随着集成电路产业进入纳米工艺时代,由随机缺陷造成的成品率问题越来越严重。巨额的生产成本和更短的上市周期,要求在产品设计阶段就能对成品率做出快速而准确的预测,并能通过改进设计提高成品率。本文围绕随机缺陷成品率预测技术,通过如下工作对成品率预测的准确性和有效性进行了改进:1.针对化学机械研磨工艺特有的划痕缺陷,引入一种线形缺陷模型。使用圆缺陷模型对示例版图提取得到的平均关键面积是线形缺陷模型的2倍多。通过对粒子缺陷和线形缺陷分开建模并计算对成品率的影响,提高了成品率预测的精度。2.针对曼哈顿版图,提出一个新的关键面积数学模型。通过分析证明,得到曼哈顿版图的关键面积是一个关于缺陷尺寸的分段二次函数,并给出了求函数系数和分界点的方法。3.结合2中提出的关键面积数学模型,对传统的多边形算子方法进行改进。通过有效选择缺陷尺寸并提取关键面积,得到连续的关键面积值。避免了不必要的关键面积提取,消除了传统方法的积分误差。实验证明改进的多边形算子方法相较于传统方法能够最多提升24.24%的精确度或者减少59.7%的计算成本。4.提出了一种动态提取局部关键面积的方法。成品率驱动设计通过局部替换标准单元或者修改金属互连线来优化关键面积,触发了大量的关键面积重计算。动态提取法通过最小化关键面积的重新计算区域和消除区域之间的相关性,减少了重新计算关键面积的时间成本,提高了成品率驱动设计的有效性和可行性。

【Abstract】 Since the IC industry has entered the nano-technology era, the yield loss caused by random defect has become a critical issue. Higher production cost and shorter time-to-market call for an accurate and efficient yield prediction before the design gets manufactured.Focusing on the random defect yield prediction technology, we have improved the accuracy and efficiency of yield prediction via the following works:1. Considering the scratches introduced by CMP (Chemical Mechanical Planarization) process, a linear defect model is introduced. Compared with the linear defect model, the circular model obtains two times larger critical area values for sample layouts. By separately modeling linear defect and particle defect and calculating the yield loss caused by them, the accuracy of yield prediction is improved.2. Proposed a new mathematical model of critical area for Manhattan layout. Through strict mathematical analysis, we proved that the critical area of a Manhattan layout is a piecewise quadratic polynomial function of defect size and illustrated how to obtain the coefficients and demarcation points.3. Combining the mathematical model developed in2, the traditional shape shifting method is improved. By appropriately selecting the defect size and extracting critical area, a continuous critical area function for all defect sizes is obtained. The improved method avoids unnecessary critical area extraction and eliminates the integration error of traditional shape shifting method. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by24.24%or reduce about59.7%computational expense compared with traditional method.4. Proposed a dynamic extraction method for local critical area. In design-for-yield flow, critical area is optimized through standard cell replacement or metal wire modification, which causes a lot of re-extraction of critical area. By optimizing the re-extraction area and removing the area dependency, the dynamic extraction method greatly reduces the computational cost and improves the efficiency and feasibility of design-for-yield flow.

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2014年 07期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络