节点文献

几种高温高残留聚环三磷腈—酰胺研究

Research on Several High Residual Poly(Cyclotriphosphazene Amide)s at High Temperature

【作者】 赵正平

【导师】 郭强;

【作者基本信息】 上海大学 , 材料学, 2013, 博士

【摘要】 聚磷腈及其衍生物是一类以氮磷原子交替排列再通过有机取代侧基构建的新型有机无机杂化高分子材料,具有优异的耐热、耐磨、阻燃和耐辐射等特性。本文改进六氯环三磷腈(HCCP)合成工艺,进而合成四种高温高残留的聚环三磷腈-酰胺,揭示其热分解和高温高残留的规律和机理,再合成一系列不同磷腈环含量的聚环三磷腈-醚酰胺,考察磷腈环比例对热分解和高温高残留特性的影响规律,还合成聚环三磷腈-砜微球,评价其填充改性的环氧树脂固体润滑涂层摩擦磨损特性,并探讨涂层的耐磨机理。针对直接合成法和复式催化剂法产率低的不足,改用缚酸剂法以PCl5和NH4Cl合成出HCCP,不仅反应时间缩短2/3,且产率达82.3%,纯度达99.2%。同时筛选出HCCP最佳合成条件:氯苯为溶剂,吡啶为缚酸剂,原料摩尔配比为nPCl5︰nNH4Cl︰n吡啶=1︰(1.25-1.30)︰(3.00-3.50),反应温度130℃~135℃,反应时间2h。另外又通过亲核取代合成六苯氧基环三磷腈。采用FTIR、NMR、XRD、DSC、TG分析这两种环三磷腈的结构和纯度及热性能。采用HCCP与苯酚、对苯二胺、4,4’-二氨基二苯醚、4,4’-二氨基二苯砜、乙二胺合成出四种具有活性双端胺基的磷腈-二胺,然后分别与对苯二甲酰氯低温溶液缩聚生成四种聚环三磷腈-酰胺:聚环三磷腈-芳酰胺、聚环三磷腈-醚酰胺、环三磷腈-砜酰胺、环三磷腈-半芳酰胺。采用FTIR、NMR、XRD、TGA、SEM、元素分析仪分析这些聚磷腈衍生物的结构和热失重及固体残留物形貌。四种聚环三磷腈-酰胺起始分解温度约198℃~259℃,最大热分解速率温度约350℃~400℃,600℃固体残留率为36.9%~62.6%。XRD分析表明四种聚环三磷腈-酰胺室温为非晶态结构。热失重分析表明环三磷腈结构的引入,破坏主链的规整性和主链中苯环与酰胺基团间的共轭作用,抑制分子链段间氢键的形成,降低聚酰胺起始分解温度,而后期热分解速率减缓。高温分解固体残留物的FTIR、SEM和元素分析表明含有大量磷元素和P-O-P键及P=O键,证明600℃下磷腈环开环和交联反应,有中强酸物质的生成,促进芳香环的碳化和凝胶态转变,毯层状固体残留物覆盖在聚合物表面,阻碍热量传递和内部小分子物质外溢,进而减缓后期热分解速率,提高固体残留率。合成出四种具有高温高残留特性的聚环三磷腈-酰胺,揭示其热分解和高温高残留的规律和机理。采用含有活性双端胺基的1,1,3,5-四苯氧基-3,5-二(4’,4’’-二胺基二苯醚基)环三磷腈和对苯二胺及对苯二甲酰氯三种反应单体,低温溶液缩聚合成一系列主链含不同磷腈环含量的聚环三磷腈-醚酰胺。采用FTIR、XRD、TGA、SEM、水接触角分析聚环三磷腈-醚酰胺的结构和热失重及表面能。随着磷腈环比例的增大,聚合物结晶性能显著下降,由晶态结构逐步转变为非晶态结构,起始分解温度由467.9℃逐步降低到198.6℃,而高温固体残留率却先增加后降低。一定含量磷腈环的引入,热分解过程中生成的中强酸物质有效促进苯环碳化和凝胶态物质生成,显著提高聚合物的高温固体残留率。然而,随着磷腈环比例的增大,分解生成中强酸量增多,碳化过程中裂解脱水严重,对毯层状固体残留物的消耗和膨胀作用增强,导致高温固体残留率略有降低。磷腈环比例的逐步增大使聚环三磷腈-醚酰胺由亲水性转变为超疏水性。采用沉淀聚合法,以HCCP和4,4’-二羟基二苯砜为反应单体,合成出聚环三磷腈-砜微球(PZs),其为非晶态结构,起始分解温度为457.5℃,600℃固体残留率为63.1%,平均粒径为493nm。按PZs不同填充量制备一系列环氧树脂固体润滑涂层试样,3wt.%填充量时摩擦系数由纯环氧树脂的0.61降低到最小值0.38,比磨损率降低到最小值13.2×10-11mm3/Nm。涂层磨痕SEM分析表明纯环氧树脂涂层粘着磨损显著,PZs微球加入首先起到固体润滑作用,减少摩擦热的生成,其次有利于摩擦热的扩散,再者改善涂层耐热性,综合效果是减弱涂层与摩擦副的粘着作用,磨痕较光滑无凹坑,未见明显成片剥落,从而降低摩擦系数,减少磨损率。另外,PZs中氮磷元素丰富,大量存在于聚合物转移膜中,促进摩擦化学作用,有效发挥固体润滑功能。

【Abstract】 Polyphosphazene and its derivatives are a class of novel macromoleculescontaining alternate phosphorus-nitrogen single and double bonds with two changingorganic side groups to be prepared new organic-inorganic hybird materials with awide range of chemical and physical properties, like excellent heat resistance, wearresistance, flame retardant and radicalization resistance performances in many areas.The synthetic process of hexachlorocyclotriphosphazene (HCCP) was improved,firtly. Four high-temperature residual poly(cyclotriphosphazene amide)s weresynthesized to study the mechanism of thermal decomposition and high residualduring high temperature progress. And a series of different phosphazene ringcontents of poly(cyclotriphosphazene-ether amide)s were synthesized to investigatedthe influence of the proportion of phosphazene ring on the characteristics of thermaldecomposition and high-temperature residual. Polycyclotriphosphazene-sulfonemicrospheres were synthesized to evaluate the friction and wear properties of itsmodificated epoxy resin solid lubrication coating, and discussed the wearmechanism.In order to overcome the disadvantage of low yield at direct synthesis andcompound catalyst method, use acid agent method to synthetized HCCP throughPCl5and NH4Cl. The reaction time shortened2/3and achieved the yield of82.3%,the sublimation temperature of coarse product was120oC and the purity was99.2%.The influencing factors of reaction such as reaction time, temperature, bind acidagent etc were researched to obtain the best synthesis condition. Used chlorobenzeneas solvent, pyridine as the bind acid agent, nPCl5:nNH4Cl:npyridine=1:(1.25-1.3):(3.0-3.5), the reaction temperature was130-135oC, thereaction time was2h. Through nucleophilic replace, anotherhexaphenoxycyclotriphosphazene were synthesized. Using FTIR, NMR, XRD, DSCand TGA analyse the structure, purity and thermal performance of the two cyclotriphosphazene derivatives.Four phosphazene-diamines with active end amino groups were synthesized intwo steps from phenol, PPD, ODA, DDS and EDA via nucleophilic substitution andcatalytic reduction with HCCP. Four poly(cyclotriphosphazene amide)s weresynthesized from these diamines by direct polycondensation reaction withterephthaloyl chloride and pyridine in N-methyl pyrrolidinone, respectively. Theinitial decomposition temperature of the4poly(cyclotriphosphazene amide)sbetween198to259°C, the maximum thermal degradation rate between350to400°C, and the solid residual rate at600°C between36.9%to62.6%, respectively. XRDanalysis showed that the poly(cyclotriphosphazene amide)s belong to the amorphousstructure at room temperature. Thermo-gravimetric analysis showed that theintroduction of cyclotriphosphazene structure destroy the conjugation effect betweenbenzene ring and amide groups and the regularity of the main chain, inhibit theformation of hydrogen bond between molecular chain segments and lower initialdecomposition temperature of polyamide, but retard thermal decomposition rate oflate. FTIR, SEM and elemental analysis of high temperature solid residues analysisshowed that lots of phosphorus and P-O-P and P=O bonds in the residues whichprove that phosphazene rings openedand crosslinked at600°C, acid substances weregenerated to promote the aromatic ring carbonization and gel state transition, carpetlayered solid residues covered on polymer surface, impeded the heat transfer andinternal smaller molecules spillover, slowed decomposition late rate and improvedthe rate of solid residues.Using one reactive double end amino TPAPCP, PPD and TPC as reactivemonomers to synthetic a series of containing different proportion of phosphazenering poly(cyclotriphosphazene-ether amide)s via low temperature polycondensationreaction. Crystalline properties of the polymers decreased with the proportion ofphosphazene ring increases. The structure gradually transformed into amorphousfrom crystalline structure, the initial decomposition temperatures were graduallyreduced from467.9°C to198.6°C. But the high-temperature solid residue rate wassignificantly increased at first and then decreased. The introduction of the proportion of phosphazene ring structure is generated acid materials to effectively promote thebenzene ring carbonization and gel state carbide material in the process of thermaldecomposition, and improve the high temperature solid retention rate of the polymer.But with the increase of proportion of phosphazene ring, the acid amount increasedand benzene ring carbonization dehydration seriously, enhanced the consumptionand expansion of blanket carbon layer, which led to lower the high temperature solidretention rate. The hydrophobic properties increased with the introduction of thephosphazene ring structures and the super-hydrophobic was changed fromhydrophilic.One step to synthesize PZs with HCCP and BPS via precipitation polymerization.The initial decomposition temperature of the PZs is457.5°C, solid residual rate is63.09%at600°C, an average particle diameter of493nm and amorphous structureat room temperature. The frictional coefficient of the epoxy/PZs composite coatingreduced from0.61of pure EP to a minimum0.38and the volumetric wear ratereached a minimum13.2×10-11mm3with3wt.%PZs filling. The SEM morphologyof grinding crack showed that pure epoxy coating reflected a typical adhesive wear.PZs microspheres have an effect of solid lubrication, reduce the friction heat andpromote the proliferation of it. Meanwhile, improve the heat-resisting performanceand reduce the adhesion effect with friction pair, which led to decrease the frictioncoefficientand and reduce the wear rate. In addition, nitrogen and phosphoruselements abundanted in the PZs which rich in in polymer transfer membrane topromote friction chemistry and facilitate solid lubrication function.

  • 【网络出版投稿人】 上海大学
  • 【网络出版年期】2014年 05期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络