节点文献

含酰亚胺稠环芳烃类有机电子传输材料的设计、合成和性质研究

Design, Synthesis, and Property Study of Organic Electron-Transporting Materials Based on Derivatives of Rylene Diimides

【作者】 赵振博

【导师】 肖义;

【作者基本信息】 大连理工大学 , 精细化工, 2013, 博士

【摘要】 有机电子传输材料是构建有机半导体器件的基础。随着对有机太阳能电池(OPVs)、有机场效应晶体管(OFETs)、互补逻辑电路(complementary logic circuits)等有机半导体器件的深入研究,开发具有高迁移率、高稳定性和易溶液加工的有机电子传输材料对该领域发展具有至关重要的意义。含酰亚胺的稠环芳烃类(rylene diimides)电子传输材料,如花酰亚胺(PBIs)和萘酰亚胺(NDIs),因其具有高电子亲和势、高迁移率和良好的稳定性,作为有机电子传输材料显示出了良好的应用前景。本文以有机半导体的理论为指导设计合成了一系列含酰亚胺稠环芳烃类有机电子传输材料,并对它们的光谱性能、电化学性能、热稳定性和电子传输性能进行了研究。通过光环化反应将邻苯二胺引入到花酰亚胺1,6,7,12位(港湾位)设计并合成了含有二氨基和四氨基的花酰亚胺多官能团单体8和9。在关键的光环化反应中发现了独特的区域选择性,即光照闭环反应选择性地发生在硝基的邻位;通过多官能团单体8和9构建了3个具有大平面的梯形共轭大分子12、13和15,并且分别研究了3个梯形共轭分子的光谱性质、电化学性质和热稳定性;使用空间电荷限制电流(space charge limited current, SCLC)的方法测试了化合物12、13和15的电子迁移率。梯形共轭分子共轭平面的增大有利于提高其在薄膜上排列的有序性,进而可以提高分子间的电荷传输。其中化合物15表现出较高的SCLC迁移率,可以达到3.34×10-3cm2v-1s-1;以P3HT为供体材料分别与化合物12、13和15构建有机薄膜太阳能电池,其太阳能电池效率均高于参比化合物PBI。设计并合成了一类新型的电子传输材料:三苯二嗯嗪酰亚胺梯形共轭分子33、34、35、36和37。相对于参比化合物PBIref.,化合物33、34、35、36和37具有更大的吸光范围、更长的吸收波长和更大的摩尔消光系数:这一类化合物具有光稳定性和热稳定性,通过调节N端侧链结构还可以将液晶性引入其中;SCLC电子迁移率测试表明:对于具有相同侧链结构的参比化合物PBI ref.,三苯二噁嗪酰亚胺梯形共轭分子因其分子间作用力更强,形成的薄膜更加有序,表现出更高的迁移率。其中化合物37的迁移率最高,达到3.90×10-3cm2V-1s-1。这些数据表明化合物33、34、35、36和37显示出良好的作为有机电子传输材料的应用前景。。使用催化剂[Ir(COD)(μ-OMe)]2催化活化花酰亚胺邻位C-H,再经过取代反应和偶联反应合成了苝酰亚胺的2,5,8,11位(邻位)含有取代基的化合物40、41、42、43和44。通过在花酰亚胺的邻位引入卤原子,化合物40和41的光谱发生蓝移,LUMO能级明显降低,电子亲和势增大,分子问作用力变强,在薄膜上的排列更加紧密,薄膜变得更加有序,进而提高SCLC电子迁移率。通过在花酰亚胺邻位偶联具有供电子性质的芳香基团,化合物42、43和44在氯仿中光谱发生红移,能隙变窄,LUMO能级升高,扩大了化合物吸光范围,提高了吸光能力,有利于其在有机薄膜太阳能电池(OPV)方面的应用以3,4,9,10-花四羧酸二酐(PTCDA)和L-丙氨酸为原料以水为溶剂,通过酯化的方法高效合成7个不同侧链长度花酰亚胺L-丙氨酸酯衍生物46、47、48、49、50、51和52。运用差示扫描量热法(DSC)、偏光显微镜(POM)及和热重分析(TGA)对这7个化合物进行研究。化合物46、47、48、49、50、51和52表现出良好的热稳定性,其失重5%时的温度大于3500C。其中化合物50、51和52表现出液晶性并且液晶相范围大于100℃。随着茈酰亚胺L-丙氨酸酯侧链的变长,液晶熔点升高,液晶相温度范围变窄。SCLC迁移率测试表明:随着侧链长度的增加,化合物在薄膜上的有序性降低;具有液晶性的苝酰亚胺衍生物50、51和52在其液晶相温度范围内退火后可以得到较高的SCLC电子迁移率,其中化合物51的电子迁移率可以达到1.90×10。cm2V-1s-1。

【Abstract】 Organic electron-transporting materials are the bases for the fabrication of organic semiconductor devices. With investigation of organic optoelectronic devices, such as Organic photovoltaic cells (OPVs), organic field-effect transistors (OFETs) and complementary logic circuits, et al., the developments of organic electron-transporting materials with high mobility, good stability and facile processability are the key factor to restricted the development of organic semiconductors. Rylene diimides such as perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs) and naphthalene-1,8,4,5-tetracarboxylic diimides (NDIs), are a robust, versatile class of polycyclic aromatic electron-transporting materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities. In this dissertation, we designed and synthesized a series of rylene diimides based on PBIs and triphenodioxazine, and carried on a research on optical properties, electrochemical properties, thermal stabilities and electron-transporting properties.Multifunctional building blocks8and9were efficiently synthesized by fusing a perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs) core with o-phenylenediamine. In the key photocyclization step, an unusual regioselectivity at the position ortho to the nitro group was discovered in the coupling of the o-nitroaniline functional units at the bay sites of PBI. Multifunctional building blocks8and9were condensed with a pyrenedione, a pyrenetetraone and a hexaketocyclohexane octahydrate respectively, to construct novel ladder-type conjugated compounds12,13and15, and their optical properties, electrochemical properties and thermal stabilities have been investigated. Space charge limited current (SCLC) indicated that the enlargement of conjugated planar can enhance the intermolecular charge transport by improving molecular arrangement in the thin films. These ladder conjugated molecules were preliminarily applied as electron acceptors and blended with P3HT as the donor to fabricate BHJ solar cells, which exhibited better performance than their reference compound PBI.Ladder conjugated molecules based on triphenodioxazine diimides33,34,35,36and37were synthesized by a facile method and their optical properties, electrochemical properties and thermal properties were also investigated. Compared with PBI ref., these compounds exhibited intensive absorption in the range of200-600nm. Photodecomposition experiments and thermal gravimetric analysis (TGA) indicated that these compounds have good photostabilities and thermal stabilities, and compounds33and36exhibit liquid-crystalline behavior. The space-charge-limited current (SCLC) devices fabricated via spin coating, they exhibited n-type semiconductor performances with intrinsic electron mobilities considerably higher than that of the PBI ref., and compound37showed the best electron mobility with3.9x10-3cm2V-1s-1. These characteristics qualified compounds33,34,35,36and37as attractive electron-transporting materials applicable in organic electronics.Perylene bisimides derivatives40,41,42,43and44were synthesized by introducing substituents at the2,5,8,11-positions of the perylene core under Ir-catalysis and their optical properties, electrochemical properties and thermal stabilities have been discussed. Compared to reference compound38, hypsochromic shifts in the absorption and emission were observed for the derivatives40and41and the tetrachloro derivative40shows a greater shift than the tetrabromo one41. Their LUMO values are-4.18eV and-4.16eV, which are significant low than reference compound38. By introducing phenyl, thienyl and carbazolyl at the2,5,8,11-positions, the absorption bands show a bathochromic shift and the energy gaps become narrow when compared to the reference compound38. Their electron-transporting mobilities were investigated by SCLC method and compound43show the best result which reaches4.88×10-4cm2V-1s-1.Seven perylene bisimide derivatives46,47,48,49,50,51and52with side chains of L-aminopropanoic acid ester were designed and synthesized. Their liquid-crystal characters and thermal stabilities were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and thermal gravimetric analysis (TGA). The results indicated that all of the seven compounds have good thermal stability with5%decomposition temperatures (Td) higher than350℃, Compounds50,51and52exhibit liquid-crystalline behaviors with wide temperature range. Their melting points would rise as the side chains grow, but the temperature ranges of their liquid-crystalline become narrow. SCLC measurement indicated that compounds50,51and52which exhibit liquid-crystalline behaviors, showed better charge-transporting mobilities, which was up to1.90×10-3cm2V-1s-1for compound51.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络