节点文献

放电等离子烧结制备陶瓷颗粒/晶须增韧WC复合材料的研究

Research on Preparation of Ceramic Particle/Whisker Toughened WC Composites by Spark Plasma Sintering

【作者】 郑东海

【导师】 李元元;

【作者基本信息】 华南理工大学 , 材料加工工程, 2013, 博士

【摘要】 WC-Co硬质合金具有优良的综合性能,在现代刀具材料、耐磨材料等方面得到广泛应用。WC-Co合金中的WC相具有极高的硬度和优异的耐蚀性和耐高温性,金属类粘结剂(Co)的加入虽然可以提高合金的强韧性,但同时会使合金的硬度下降和耐腐蚀性变差,而且在高温下粘结相会发生软化等特性还限制了其在高温环境下的应用。利用放电等离子烧结等新技术可以制备出致密的无粘结相纯WC材料,但其偏低的韧性是此类材料获得广泛应用的最大障碍。为了提高无粘结相WC材料的韧性,传统陶瓷材料的增韧手段对此具有很重要的借鉴价值。本文以无粘结相WC材料为研究对象,研究了该材料在不同SPS烧结工艺下的致密化行为、相组成、显微组织以及力学性能;针对该种材料偏低的断裂韧性,借鉴传统陶瓷材料的增韧手段,引入相变ZrO2颗粒、Al2O3颗粒对其进行了增韧研究,还首次成功地运用“原位生成”技术制备了由原位自生β-Si3N4晶须增韧的无粘结相WC材料,并且扩展了“两步烧结法”的理论内容及应用范围,将其成功地应用于SPS烧结WC-Si3N4材料中,将β-Si3N4晶须生成过程与WC晶粒快速生长过程分离开来;另外还研究了VC与Cr3C2晶粒生长抑制剂对上述材料体系的影响。通过研究分析,主要的研究结果如下:(1)采用SPS制备了无粘结相的纯WC材料、WC-x wt.%ZrO2(x=1,2,3,6,8,10)复合材料、WC-x vol.%Al2O3(x=0,6.8,12.4,16.7,43.6)复合材料以及WC-xwt.%Si3N4(x=1,3,6,8,10,12,15)复合材料。ZrO2/Al2O3/Si3N4(93wt.%Si3N4-6wt.%Y2O3-1wt.%Al2O3)的加入均可以促进WC材料的致密化过程。(2)WC-ZrO2材料经过SPS烧结后,试样里的ZrO2颗粒仍以四方结构为主,均匀弥散分布在WC晶粒之间;随ZrO2含量从0增加到10wt.%,WC-ZrO2材料的硬度从24GPa下降至18GPa,而断裂韧性则从6.0MPa·m1/2提高至10.60MPa·m1/2,主要增韧机制为四方ZrO2颗粒的相变增韧。对于WC-8wt.%ZrO2材料,在15001700°C烧结温度范围内,随温度升高,WC晶粒与ZrO2颗粒都逐渐长大,而VC和Cr3C2添加剂的加入可以完全抑制住WC晶粒与ZrO2颗粒的生长;材料组织越细,则材料的硬度越高,但断裂韧性对材料组织的粗细度变化不敏感;采用含有VC和Cr3C2添加剂的细小WC粉末(0.2μm)作为原料,经过在1600°C保温5min烧结得到的WCVCr-8ZrO2试样其硬度和断裂韧性分别为22.20GPa和11.40MPa·m1/2。对于WC-ZrO2复合材料,在维氏硬度测试(10kg)中,当ZrO2含量较低时(≤3wt.%),材料所对应的裂纹系统为半圆型系统,而随着ZrO2含量的增多(≥6wt.%),其所对应的裂纹系统会向巴氏裂纹系统发生转变。(3)Al2O3颗粒的加入对WC材料有一定的增韧作用,但效果并不显著,WC-Al2O3材料的断裂韧性最高仅为6.49MPa·m1/2;增韧机制主要为Al2O3颗粒对裂纹的桥接作用以及材料断裂模式从沿晶断裂转变为部分穿晶断裂。(4)对于WC-Si3N4材料,在100°C/min升温速率下,β-Si3N4在1700°C以上会发生“快速熟化”现象——α→β-Si3N4快速转变、β-Si3N4晶须快速长成,与此同时WC基体晶粒也迅速发生长大;在15501600°C进行长时间保温,由于β-Si3N4熟化过程进行得比WC晶粒生长过程快,因而可以将WC晶粒快速长大过程与β-Si3N4晶须长成过程分离开来,从而实现抑制WC晶粒快速生长的目的;采用两步烧结方式(先升温到1700°C随即冷却至1600°C保温30min)可以制备出WC晶粒相对细小而且生成了大量β-Si3N4晶须的WC-10wt.%Si3N4材料。致密的WC-10wt.%Si3N4材料其硬度与WC基体晶粒平均尺寸成反相关,其断裂韧性主要随β-Si3N4晶须数量的增多而增大,β-Si3N4晶须对WC材料的增韧机制主要包括晶须拔出和裂纹桥接。采用两步烧结的WC-x wt.%Si3N4(x=115)复合材料,随着Si3N4含量的增多,α→β-Si3N4相转变率先增大后减小,材料的断裂韧性也呈现出同样的规律,当Si3N4含量为10wt.%时相转变率达到最大,为100%,其断裂韧性值也达到最大,为10.94MPa·m1/2,与此同时材料的硬度为17.65GPa。VC与Cr3C2添加剂的存在对α→β-Si3N4相转变过程的影响并不大,却对WC晶粒的生长具有显著的抑制作用,因而可以在相同的烧结条件下提高WC-Si3N4材料的硬度;含VC与Cr3C2添加剂的WC-10wt.%Si3N4材料经过在1900°C不保温烧结后,其硬度和断裂韧性分别为17.43GPa和10.07MPa·m1/2

【Abstract】 WC-Co cemented carbides have been widely used as cutting tools and wear-resistantcomponents due to a singular combination of mechanical properties. The addition of Cometallic binder phase to the WC which possesses extremely high hardness and excellentcorrosion-resistance as well as high temperature performance, increases the strength andtoughness of the composite considerably. However, the metallic binders in cemented carbidesare deleterious on hardness and corrosion-resistance, and also be an obstacle for theapplication at elevated temperature where it does soften. Pure WC can be densified by somenewly developing sintering techniques such as spark plasma sintering (SPS), but the lowtoughness of which limits the application of it. To improve the toughness of WC withoutmetallic binder phase, attention should be attracted to the toughening methods used intraditional ceramics.In this study binderless WC were sintered at different SPS conditions with focus on thedensification behavior, phase constitution, microstructure and mechanical properties of thematerial. In order to elevate the fracture toughness of the binderless WC,transformation-toughening by partially stabilized ZrO2(PSZ) and particle toughening byAl2O3were adopted, as well as whisker toughening by in-situ grown elongated β-Si3N4grains, which have not been investigated to date. Moreover,“two-step sintering” wasextended and successfully applied to preparation of WC-Si3N4composites with largeelongated β-Si3N4grains in a fine WC matrix. In addition, effects of VC and Cr3C2additionson the material systems mentioned above were also studied. The main research results are asfollows.(1) Pure WC, WC-x wt.%ZrO2(x=1,2,3,6,8,10) composites, WC-x vol.%Al2O3(x=0,6.8,12.4,16.7,43.6) composites, and WC-x wt.%Si3N4(x=1,3,6,8,10,12,15) composites are fabricated by SPS. The addition of ZrO2/Al2O3/Si3N4(93wt.%Si3N4-6wt.%Y2O3-1wt.%Al2O3) to WC facilitates sintering of the composites.(2) After SPSed, most of the tetragonal ZrO2remain until room temperature, and theZrO2-particles are homogeneously dispersed in the WC matrix. As the ZrO2content increasesfrom0to10wt.%, the hardness of the WC-ZrO2composites decreases from24GPa to18 GPa, and the fracture toughness of the WC-ZrO2composites increases from6MPa m1/2to10.6MPa m1/2. The transformation toughening is believed to be the most importanttoughening mechanism. For the WC-8wt.%ZrO2composites sintered at15001700°C, theaverage size of WC and ZrO2grains increases with sintering temperature, however, theaddition of VC and Cr3C2significantly suppresses the growth of WC and ZrO2grains. Themicrostructure coarsening at elevated temperatures causes degradation in hardness, whereasthe fracture toughness seems insensitive to the coarseness of microstructure. TheWCVCr-8ZrO2specimen sintered at1600°C for holding5min using fine WC powder (0.2μm) with VC and Cr3C2possesses hardness and fracture toughness of22.20GPa and11.40MPa·m1/2respectively. For the WC-ZrO2composites, the Palmqvist cracks are typicallyobserved in the high ZrO2-content grade composites (≥6wt.%), while the median cracks,corresponding to the half-penny cracks system, are involved for the low ZrO2-content grade(≤3wt.%).(3) The toughening effect exerted by Al2O3particles is not significant, and the fracturetoughness of the WC-Al2O3composites reaches6.49MPa·m1/2only. The tougheningmechanisms include the crack-bridging by Al2O3particles and the local change in fracturemode from intergranular to transgranular.(4) For the WC-Si3N4composites sintered with a heating rate of100°C/min, fasttransformation of Si3N4from α to β and the β-Si3N4grain fast-growth resulted from“dynamic ripening” happen at above1700°C, accompanied with WC-grain fast-growth. Byexploiting the difference in kinetics between WC grain-growth and β-Si3N4grain-growththrough sintering at15501600°C for holding a long time, the separation of β-Si3N4grain-growth from WC-grain fast-growth and the suppression of WC-grain fast-growth areachieved. The WC-10wt.%Si3N4specimen after heated to1700°C and treated at1600°C for30min (two-step sintering) obtains large elongated β-Si3N4grains in fine WC matrix. For thedense WC-10wt.%Si3N4specimen, the hardness increases against the WC-grain size, andthe fracture toughness increases with the amount of elongated β-Si3N4grains. The majortoughening mechanisms are found to be elongated Si3N4grain-pullout and crack-bridging byelongated Si3N4grain. For the two-step sintered WC-x wt.%Si3N4(x=115) composites,the α→β-Si3N4transition rate and the fracture toughness increase with the Si3N4content, and then decrease as the Si3N4content exceeds10wt.%. As the Si3N4content reaches10wt.%,the α→β-Si3N4transition rate reaches100%, and the hardness and fracture toughness of thespecimen reaches17.65GPa and10.94MPa·m1/2respectively. Addition of VC and Cr3C2donot hinder the transformation of α to β-Si3N4or the growth of elongated β-Si3N4grains, butshows an inhibitory effect against WC grain growth, which results in higher hardness for theWC-Si3N4composites. The WC-10wt.%Si3N4specimen containing VC and Cr3C2sinteredat1900°C without holding possesses hardness and fracture toughness of17.43GPa and10.07MPa·m1/2.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络