节点文献

潮流能直驱式海水淡化装置技术及仿真研究

Technology and Simulation of Sea Water Desalinaiton Device Directly Dirven by Tidal Current Energy

【作者】 徐明奇

【导师】 张雪明;

【作者基本信息】 东北师范大学 , 环境工程, 2013, 博士

【摘要】 利用海洋中可再生能源进行海水淡化是目前的研究热点,现有方案大都是先把可再生能源转换成电能,存储在电池里,然后再利用电能进行海水淡化。使用电池会增加很多投资,废弃电池处理不好还会带来严重的环境问题,针对上述弊病,本文提出了一种海水淡化新方案,此种方法利用透平把海洋中的潮流能转化成机械能,然后利用机械能直接驱动反渗透海水淡化装置制造淡水,不需要经过中间电能转化。这种方案能否可行涉及一系列关键问题。本文通过计算机仿真及水槽缩比实验对这些问题展开了研究,研究内容如下:1)对我国海岛及潮流资源情况进行了分析,在此基础上提出有针对性的设计。提出了潮流能直驱式海水淡化新方案的整体设计以及海洋环境下投放、工作方式的设计。装置主体主要包括三个部分:透平部分、动力传输部分、反渗透部分。2)为适应低流速的海洋潮流条件,进行低流速高效透平的结构参数的设计,参数包含如透平叶片翼型、透平半径、叶片数、攻角、实度等,通过合理的设计使之能产生足够的扭矩驱动反渗透设备的高压泵。面对海洋强电解质腐蚀性的恶劣环境,探索经济有效的密封及防腐的解决办法。设计采用磁力耦合为动力传输方式,解决动力传输时的动密封问题,并采用非金属材料设计耐海水轴承及主轴。整体流线型设计,采用非金属材料作为外壳,具有足够的强度,可以抵御海水的腐蚀及风浪的破坏,确保长时间在海洋环境下运行。对相对成熟的反渗透系统进行了能量回收的改进。3)根据工程流体力学相似原理及相似关系对所设计的方案进行了缩比计算机仿真,获取透平相关数据,验证透平设计的合理性,确定关键参数的选取,纠正设计的偏颇;通过真实水槽的缩比实验验证整体设计的可行性、合理性;最后对设计的方案进行了产水量估算。采用机械能直驱方式最大的优势在于不需要电能转化,减少设备投资,避免电池废弃污染,更利于环境保护,节能减排,同时可以使得整个系统的效率得到提高,难点在于如何解决动力传输时的密封和低流速能量获取。仿真和实验的研究结果表明在流速0.6m/s潮流条件下进行机械能直驱式海水淡化是完全可行的。

【Abstract】 Using renewable energy to provide energy for the desalination is currently theresearch hotspot. Approach taken by most existing programs is that renewable energyis first converted into electrical energy stored in the battery, and then use electricenergy for desalination. Use of battery will increase investment, waste batteries cancause serious environmental problems. Response to these shortcomings, this paperproposes a new desalination program, this method is that the turbines convert the tidalcurrent energy into rotational mechanical energy, mechanical energy is then used todirectly drive a reverse osmosis desalination device manufacturing fresh water, doesnot require electrical energy conversion. Program involves a series of key issues.Through computer simulation and experimental flume scaled carried out research onthese issues, as follows:1). According to the analysis of island resource and the tidal currents resourceproposed the overall design scheme. Apparatus comprises three main parts: theturbine section, the power transmission portion, the reverse osmosis section.2). In order to meet the low flow of tidal currents, low flow efficient turbinestructural parameters are designed, such as turbine blade airfoil, turbine radius, thenumber of blades, angle of attack, etc. Through rational design so that it can generateenough torque to drive the high-pressure pump of reverse osmosis equipment. Theface of strong electrolyte corrosive marine harsh environment, to explorecost-effective sealing and corrosion protection solutions. Using magnetic coupling ofthe power transmission to solve the problem of dynamic sealing power transmission,and the use of non-metallic materials to solve the problem of seawater corrosionbearings and spindles. Streamlined design, the use of non-metallic material as thehousing, with sufficient strength, to resist seawater corrosion and damage of thewaves, ensuring the long life in the marine environment. Improved the relativematurity of the reverse osmosis system through energy recovery.3). According to similar principles of fluid mechanics and similar relationships,The design of the program was scaled computer simulation to get the turbine-relateddata to verify the reasonableness of turbine design, sure to select the key parametersto correct design biased, Verify the feasibility and rationality of the overall design byScaled tank experiments,finally estimate the water production.The biggest advantage of direct drive mode using mechanical energy is that noelectric energy transformation, reducing equipment investment and avoid batterywaste pollution, more conducive to environmental protection, low-carbon emissions,while making the overall system efficiency is improved, the difficulty lies in how to solve the power transmission sealing and low flow energy harvesting. Simulation andexperimental results show that the flow rate of0.6m/s tide conditions direct-drivemechanical energy desalination is entirely feasible.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络