节点文献

花纹结构对轮胎花纹沟噪声和滑水性能影响规律及协同提升方法研究

Investigate into Influence of Tire Tread Pattern on Noise and Hydroplaning and Synchronously Improving Methods

【作者】 周海超

【导师】 王国林;

【作者基本信息】 江苏大学 , 车辆工程, 2013, 博士

【摘要】 欧盟标签法对轮胎安全和环保性能提出明确的要求,协同提升轮胎性能的瓶颈问题是轮胎性能之间的矛盾。由于花纹结构对轮胎诸多性能具有决定性影响,研究轮胎花纹设计理论和方法具有重要的理论意义和工程应用价值。本文以205/55R16乘用车轮胎为研究对象,在不改变胎体结构和胶料配方的前提下,研究轮胎花纹沟噪声和滑水产生时流体运动及流场分布特征,探索轮胎使用因素和花纹结构设计对轮胎花纹沟噪声和滑水性能影响规律。引入管道声学理论和仿生学减阻降噪方法,通过纵向花纹沟开设旁支管和花纹沟壁面仿生改形设计两种方法,实现协同提升轮胎花纹沟噪声性能和滑水性能的目的。本文提出一套混合花纹沟噪声和滑水性能的仿真分析方法。通过ABAQUS软件建立轮胎有限元模型,获取不同结构的胎面花纹在不同工况下花纹沟体积变化信息和胎肩等外轮廓变形特征,并将其作为轮胎花纹沟噪声模型和滑水模型分析的边界条件;利用计算流体力学进行轮胎花纹沟内部流场分析,通过涡声理论和FW-H(Ffowcs Williams Hawkings)方程识别声源位置和预测花纹沟远场噪声;以气-液二相流数值模型对轮胎滑水进行分析,采用VOF (Volume of Fluid)方法捕获水流自由液面运动特征,并通过胎面动水压力预测轮胎的滑水速度。以某公司生产的205/55R16轮胎SteeringAce AU01花纹结构为研究对象,分别建立花纹沟噪声模型和滑水模型,并进行数值试验研究;利用室内转鼓法进行该轮胎噪声测试,结果表明,花纹沟噪声仿真结果与轮胎噪声测试结果在中高频频带内的频谱特性一致;通过花纹沟内部非定常湍流流场微观特性分析,进行花纹沟噪声声源位置辨识。考虑轮胎稳态滚动状态下花纹沟变形,利用CFD (Computational Fluid Dynamic)建立滑水分析模型,研究滑水现象发生时水流运动特征、胎面动水压力分布和花纹沟内水流速度分布等特征,并对滑水速度进行预测。研究使用因素对轮胎噪声和滑水性能的影响。为探究花纹结构设计对花纹沟噪声和滑水性能的影响规律,分别以胎面纵向花纹沟宽度、深度和间距以及接地区内横向花纹沟宽度、与纵沟夹角和花纹沟数目为设计变量,利用正交试验和回归分析的方法,获得了胎面花纹沟结构参数对轮胎花纹沟噪声和滑水性能的影响规律。结果表明,花纹沟结构参数对花纹沟噪声和滑水性能均具有显著的影响,且在一定程度上存在矛盾关系。为化解由于花纹沟结构引起的轮胎花纹沟噪声和滑水性能之间的矛盾,提出在纵向花纹沟侧壁增设旁支管的方法,研究结果表明,增设旁支管能够协同提升花纹沟噪声和滑水性能;借鉴流体工程领域减阻降噪研究成果,提出纵向花纹沟底部布置V形沟槽仿生改形设计方法,建立仿生花纹模型。数值试验研究V形沟槽夹角、高度对花纹沟排水能力和花纹沟噪声的影响,并进行V形沟槽结构优选。应用计算气动声学和有限体积方法对优选后的V形沟槽仿生改形花纹进行花纹沟噪声和滑水性能预测,结果表明,花纹沟底部V形沟槽仿生改形设计方法能够协同提升轮胎花纹沟噪声和滑水性能。

【Abstract】 The tire labeling regulation has set requirements of tire safety and environmental protection, the bottle-neck problem of synchronously improving tire quality is contradictory in tire performances. Tire tread pattern performs a decisive function on tire comprehensive properties. It is of great significance to study tread pattern design, to analyze influence law on tire performances. This work is based on the tread pattern of Radial tire205/55R16, the influence of tread pattern structures on tire pattern groove noise and hydroplaning performance is analyzed from numerical simulation, computational fluid dynamics and bionic design. The contradiction between tire pattern noise and hydroplaning performance is verified through the tread design and flow field analysis. Exploring the methods for the reduction of fluid drag force and noise by using bypass structure and the bionic tread groove and realize synchronously improvement of tire properties. The main contents of this work are as follows:Provided an idea on analyzing tire mixed tread pattern noise and hydroplaning performances:extracting the tread groove deformed displacements through ABAQUS and implement it on tread pattern noise and hydro-planning model as the boundary condition, mean while considering the vortex theory and FW-H (Ffowcs Williams Hawkings) equation, and combing it with the computational dynamics to set up the tread pattern groove noise control equation and acoustic field equation. By virtual of Gas-liquid two-phase flow model, tire hydrolplaning is simulated. Based on the VOF (Volume of Fluid) model built up tire hydro-planning and free-field control equation and predict hydroplaning velocity.According to the205/55R16SteeringAce AU01tire pattern groove design, the tread pattern groove noise and hydroplaning model are built up, and then the numerical simulation on tire tread pump noise is done. Tire noise is tested by laboratory drum test. Comparing the simulation results with the experiment results to validate the reliability of the simulated results; this work lays up the foundation for exploring the influence of tread groove on tire pump noise; Combing the deformed character of tread pattern grooves under rolling condition, the tire hydroplanning simulation model is set up and used to predict hydroplaning velocity. To further analysis the water fluid distribution character, the hydrodynamic pressure distribution of tread surface, tire tread groove hydrodynamic pressure as well as the water distribution is visually presented.Tire velocity and water depth for hydroplaning performance are simulated by CFD (Computational Fluid Dynamic), and inflation pressure, load and velocity for tire noise are test for tire rolling noise, all the results show velocity is important factor for tire performance. In order to get the influence law of tread pattern structure on tire pattern noise and hydroplaning performance, with the help of orthogonal test, the width, the depth and the space of circumferential pattern grooves as design factors are analyzed for the two performances. The width, the angle with circumferential pattern grooves and the number of transverse pattern grooves are also analyzed for the two performances. Influence of Tire tread pattern on noise and hydroplaning is obtained. The results show that the structural parameters of tire tread pattern design have importance on tire noise and hydroplaning performance. In other words, tire tread pattern groove noise and hydroplaning performance are conflict in a large extent.In order to settle the integral contradiction of tire noise and hydro-planning performance, the bypass structure and bionic non-smooth structure are separated used. By numerical analysis to study the influence of different bypass structure on tire noise and hydroplanning performance. The results show tire longitude groove with bypass can improve pattern noise and hydroplanning performance; then, the non-smooth tire groove is set up by using the great achievement in tire fluid drag reduction mechanism. The same V-riblet structure of flying animal and aqua animal are chosen as the research object to study how the angle, height affect tire groove water displacement and tread pattern groove noise, in order to explore the best tire groove design method and build multi-performance bionic tire tread groove. Finally, the computational aerodynamic and finite volume method is used to predict and evaluate the tire noise and hydroplanning performance. The result shows that the tread groove with optimized V-riblet structure can reduce tire noise and improve hydro-planning performance synchronously.

  • 【网络出版投稿人】 江苏大学
  • 【网络出版年期】2014年 05期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络