节点文献

可再生能源纳米材料与金属离子荧光传感器的设计、合成及其应用

Design and Synthesis Hano Materials for Renewable Energy,and Fluorescence Sensors for Detecting Cations and Their Applications

【作者】 黄亮

【导师】 曾正志;

【作者基本信息】 兰州大学 , 无机化学, 2013, 博士

【摘要】 随着社会经济的高速发展,工业废弃物和石油燃烧致使环境污染已增加至近年来的最高点,严重危害到人类的健康和生命安全。本博士论文针对解决环境污染有关的能源纳米材料和环境污染系统的金属离子检测等关键的化学课题,开展了一系列的研究和探索工作。电子能量储存和转换系统在有效使用可再生清洁能源上,发挥着至关重要的作用。特别是电化学能量储存和转换设备,如电池和超级电容器等,被认为是最有前途的便携式和移动通信设备的应用器件。在这些器件中,超级电容器相比传统的电池具有许多优点,包括快速充电,长期循环稳定和可提供比锂电池高达10倍以上的功率。这些功能正是电动汽车和智能电网在实际应用中所需要的。另一方面,化学传感器被定义为可随意传导被分析物信号的一种可逆结构的非生物分子。和许多不同类型的传感器相比,荧光化学传感器具有以下几个优点:高灵敏度、特异性、可实时监控和快速响应时间等。从前人的研究中我们可以看出,基于荧光素、罗丹明、香豆素类衍生物的荧光化学传感器,以低毒、低价、高量子产率等特性,己使其成为检测汞、铅、铜和铁等金属最有前景的探针工具。本博士论文分成八章,分别阐述一系列应用于超级电容器的纳米材料和金属离子荧光传感器的合成、性质及其应用的研究:1,综述了近年来超级电容器和金属离子荧光传感器的发展和研究现状;提出了本文的研究目的。2,通过简单的水热反应和电化学沉积,合成了一系列三维结构的CoxNi1-xDHs/NiCo2O4/CFP混合材料。这些混合材料在作为超级电容器电极的应用中,通过三电极测试系统表现了很高的电化学性能。3, Ni(OH)2/Co3O4和Ni(OH)2/NiCo2O4混合材料直接生长在碳纸上,作为活性材料成功地应用于超级电容器;相同测试条件下Ni(OH)2/NiCo2O4/CFP比Ni(OH)2/Co3O4/CFP表现出了更高的质量比电容和高电流密度电容保持率,将电流密度从2mA/cm2增加到50mA/cm2,电容保持率为79%。4,由非催化汽相淀积工艺合成了单晶SnSe2纳米片;在此过程中SnSe2纳米片的生长表现了对基板强有力的依耐性。在不同温度下,生长在云母和硅衬底上的SnSe2纳米片形态差异证实了基板的作用。通过分析可以得出,温度依赖性的形态差异主要由SnSe2在不同基板表面上吸附原子的迁移来控制。5,通过罗丹明衍生物键合喹哪啶及呋喃基团,分别合成了两种检测铜离子的荧光化学传感器L1和L2。L1和L2与铜离子配位后,它们的紫外吸收光谱和荧光信号强度都明显增强,这表明L1和L2可以有效地避免螯合铜离子后所产生的顺磁性质而使荧光猝灭。L1和L2可以在众多金属离子(如钙,镁,镍,锰,二价铁,三价铁,汞,锌和铬离子)存在的水溶液中选择性地对铜离子响应,相应时间短于两分钟。细胞成像研究表明,L1和L2都成功地实现了活体细胞中的铜离子检测。6,成功合成了一种含硫的罗丹明衍生物L3。该分子显示出对铜离子很高的灵敏性和选择性。通过高分辨质谱推论其对铜离子响应的机理为:铜离子螯合作用使罗丹明的内酰胺环开环,继而进行氧化还原和水解反应。生物成像研究表明,L3能够很好地实现活细胞中铜离子的检测,是一个很好的铜离子检测工具。7,合成了一种新的基于香豆素的铜离子荧光传感器L4,该传感器显示了其在水溶液中对铜离子检测的高灵敏度和选择性,并通过高分辨质谱和DFT的模型计算阐明了铜离子对L4的荧光淬灭机理。研究了铜和L4的配合物在各种阴离子中的稳定性;荧光光谱研究结果表明,只有硫离子和焦磷酸根离子可以有效增强铜和L4配合物的荧光强度。8,通过键合喹啉基团和罗丹明酰肼类衍生物,合成了一个新型的检测三价铁离子的化学传感器(L6)。该传感器在细胞中共存丰富阳离子的条件下和环境中多种有毒金属离子存在下的水体中,成功地完成了对三价铁离子的检测,而且具有很高的选择性和灵敏度。

【Abstract】 Follow the high-speed developing of economic, the environment pollution from industry and fossil fuel have been increasing to the top point in the recent years which is dangerous for human life. In this paper, we will present our research about nanomaterials for solving energy source and environment pollution issues, and fluorescent sensors for detecting metal ion in the environment pollution system. Electrical energy storage and conversion systems play a vital role in efficient and cost-effective utilization of clean energy from renewable sources. In particular, electrochemical energy storage and conversion devices such as batteries, fuel cells, and supercapacitors are considered the most promising candidate for portable and mobile applications. Among them, supercapacitors offer a number of advantages over conventional batteries, including fast charge rate, long-term cycling stability, and the ability to deliver up to ten times more power. These features are desirable for a range of applications, from electric vehicles to smart grids. A chemosensor is defined as a molecule of abiotic origin that reversibly complexes to an analyte with a concomitant signal transduction. Of the many different kinds of sensors, fluorescent chemosensors have several advantages over other methods due to their sensitivity, specificity, and real-time monitoring with fast response time. From previous report, fluorescent chemosensors base on Rhodomine, Fluorescine, Coumarin derivate with low toxite, low price, high quantum yield were considered to be the most promising tools for the detection of Hg2+, Pb2+, Cu2+, Fe3+. In this thesis, I separate8chapters to present my research projects about synthesizing a series of nano materials for the appliactions of supercapacitros, and fluorescent chemosensors for cations: 1, Motivation of my research project, introduction of supercapacitors and review of advance fluorescent chemosensors for detecting metal ions in the aqueous solution in the recent years;2, A series of3D CoxNi1-xDHs/NiCo2O4/CFP hybrid composite electrodes have been prepared by using a facile hydrothermal synthesis and an electrodeposition process. These hybrid composite electrodes exhibit high performance in a three-electrode cell.3, hybrid composites Ni(OH)2/Co3O4and Ni(OH)2/NiCo204directly grown on CFP were used as electrodes for supercapacitors. The electrochemical performances of the Ni(OH)2/NiCo2O4/CFP are better than those of the Ni(OH)2/Co3O4/CFP electrode, demonstrating higher specific capacitance and rate capability The capacitance retention is about79%as the cycling current density was increased from2mA/cm2to50mA./cm2.4, Single-crystalline SnSe2nanoplates were synthesized by a noncatalytic vapor deposition process and demonstrated a strong mediation effect of the substrate for the growth. The effect of substrates is evidenced by a temperature dependent morphological difference in the nanoplates grown on mica and silicon substrates. Our analysis indicates that the observed temperature-dependent morphological difference can be specifically linked to the surface migration of SnSe2adatoms.5, Two rhodamine-based fluorogenic probe bearing the quinaldine unit (LI) and furan unit (L2), were developed as turn-on fluorescent chemosensors for Cu2+. Upon binding with Cu2+, comparable amplifications of absorption and fluorescence signals were observed, which suggest that chemosensors L1and L2effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu2+. Importantly, L1and L2can selectively respond to Cu2+over other commonly coexistent metal ions (such as K, Ca2+, Mg2+, Ni2+, Co2+, Mn2+, Fe2+, Fe3+, Hg2+, Zn2+, Cr3+) in aqueous media with a rapid response time (<2min). In addition, biological imaging studies using living cells to monitor Cu2+are successfully demonstrated.6, A sulfide rhodamine derivate L3was successfully synthesized. This molecular shows excellent sensitivity and highly selectivity for Cu2+in the aqueous solution. We also assume the mechanism of L3response to Cu2+by three steps, Cu2+-promoted ring opening, redox and hydrolysis reactions from the ESI-mass spectrometry. In addition, the biological imaging study has demonstrated that L3can detect Cu2+in the living cells.7, A new fluorescent sensor L4based on coumarin was synthesized. It shows high sensitivity and selectivity toward Cu2+in aqueous solution. The complexation mode and corresponding quenching mechanismwere elucidated by ESIMS and DFT calculations. In addition, the response of the L4-Cu2+complex toward physiologically and environmentally important anions was investigated through fluorescence spectra. The results indicated that only S2-and P2O72-can efficiently enhance the fluorescence intensity of the L4-Cu system over other anions.8, A Fe3+chemosensor (L6) was successfully synthesized with a quinoline moiety bound to rhodamine6G hydrazide. This sensor shows high selectivity and sensitivity to Fe3+in aqueous solution in the presence of other trace metal ions in organisms, abundant cellular cations and prevalent toxic metal ions in the environment.

  • 【网络出版投稿人】 兰州大学
  • 【网络出版年期】2014年 04期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络