节点文献

潜器水下悬停控制方法研究

Control Methods of UnderWater Vehicle Hovering System

【作者】 齐霄强

【导师】 赵琳;

【作者基本信息】 哈尔滨工程大学 , 导航、制导与控制, 2012, 博士

【摘要】 海洋经济和海洋产业的快速发展,使得对水下潜器的需求日益增长,同时对深潜控制技术提出了更高的要求;“海空联合作战”理念的发展,使潜艇作为重要的现代武器承载平台在空海一体战体系中发挥着无可替代的作用。潜器为了完成既定任务,需要实现多种运动或操纵模态,水下悬停作为潜器特种操纵模态,具有重要的经济和战略意义。国内关于潜器水下悬停操纵控制技术的研究尚处于起步阶段,因而有大量的基础性研究工作需要完成。本文在深入研究潜器操纵运动建模与控制技术发展现状以及水下悬停操纵运动控制特点的基础之上,系统地研究潜器水下悬停运动机理、辨识建模技术以及操纵控制策略。论文主要研究内容如下:在对潜器近水面悬停运动机理及动力学特性进行详细分析的基础上,基于刚体动力学原理建立了一种易于实验测定并且满足系统准确性要求的潜器悬停运动动力学模型。以某型潜艇为例计算悬停运动水动力参数,对所建立的潜器水下悬停模型进行了仿真验证。同时,全面而系统地对潜器悬停干扰因素进行了机理分析与系统建模,包括初始不均衡量、艇体体积压缩、密度变化干扰、近水面浪涌干扰以及海流在内的水下悬停环境干扰力建模;并对干扰环境下的潜器悬停运动进行了仿真研究。针对潜器近水面悬停运动的特点,基于微分几何控制理论,提出一种全局稳定的潜器悬停控制策略,将复杂的非线性潜器悬停系统通过适当的静态反馈转化为简单的伪线性系统,利用Lyapunov方法和极点配置法进行了控制器设计。通过静态理想环境条件以及动态干扰环境下对潜器悬停运动控制系统的仿真分析,验证了控制器的有效性。仿真结果表明,所设计的控制策略能够保障系统的鲁棒性,有效克服系统的不确定性,实现潜器悬停控制。近水面悬停海洋环境复杂多变,为了有效抑制近水面海浪干扰对潜器悬停运动的影响,控制潜器悬停纵倾角度以及深度的波动,基于逆控制的基本原理,提出了一种潜器悬停自适应逆控制策略,构建可变参数网络,利用状态变量反馈调节抑制潜器悬停控制系统未知扰动。仿真分析验证了控制器的有效性,该方法在不影响原系统动态性能的基础上,实现了浪涌干扰抑制消除,具有良好的鲁棒稳定性。针对潜器悬停控制系统模型中水动力参数的不确定性,以及各运动自由度之间的交叉耦合影响,很难得到原系统的精确逆模型的问题。提出了一种基于数据驱动的潜器悬停逆系统控制方法,探讨了采用基于知识引导的多元统计策略对一类仿射非线性MIMO系统建立α阶逆系统模型的方法,并以某型潜器为研究对象,建立了基于数据驱动的潜器逆控制系统。仿真研究表明,基于数据驱动的解耦控制策略可实现潜器悬停姿态的精确控制。

【Abstract】 The development of ocean economy and industry, puts higher requirements on deep dive technology. Submarine, the important platform of modern weapon, has irreplaceable function for "Airsea Battle". The underwater hovering system of which has strategic significance and highly confidential status in international. The domestic study of the underwater hovering control technology is still at an early stage with a large number of basic research to be done. On the base of maneuvering movement model and control technology and hovering manipulate motion control, the paper deeply and systematically study the mechanism underwater hovering movement, modeling techniques and control strategic. The main content of this paper is as follows:With the basis of detailed analysis of the hovering movement mechanism, hydrodynamic characteristic and the rigid body dynamics theory, a dynamics model of hovering movement has been built. It is easy to be tested and meet the accuracy system requirements. The hydrodynamic parameter of the underwater hovering submarine is calculated. As an example, checking the model built above. At the same time, the interference factor of hovering submarine is completely and systematically analyzed and modeled. Modeling of the under unbalanced initial parameter, volume compression of the submarine, the interference of changing density, near the surface waves and currents and simulating under disturbances condition are included.To the hovering movement character of the near water submarine and geometry theory, the paper puts forward a globally stable strategy of hovering movement. The nonlinear process is transformed into simply pseudo linear system through appropriately static feedback. Control strategy with Lyapunov and Pole Placement are proposed. Under the simulate analysis of hovering system in static and dynamic environment, the validity of controller is checked. As the validation shows, the designed control strategy can guarantee the robustness of the system, overcome the uncertainty of the system and control hovering movement.The marine environment for hovering movement near the water is complicated. To effectively restrain the wave interference on hovering movement and control volatility of trim degree and deepness, an adaptive inverse control strategy is proposed. The unknown disturbances on hovering controlling system is restrained by the inverse controlling theory with variable parameter network and adjustment feedback.The simulation results validate the effectiveness of the control strategy. The strategy diminishes the wave interference successfully with good robust stability, leaving the original system not be affected.Finally, as to the uncertainty of hydrodynamic parameter on hovering movement controlling models and intersectional coupling between freedom motions, the accurate inverse model could hardly be realized. The paper proposed an inverse controlling method based on data-driven control theory. The α-step inverse modeling method to a type of affine nonlinear MIMO system has been built based on multivariate statistical strategy. What’s more, an inverse controlling system is built based on data-driven with a type of submarine as research object. The simulation results indicate the decoupling control strategy based on data-driven can precisely control hovering attitude.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络