节点文献

散打鞭腿动作的运动生物力学分析

The Sports Biomechanical Analysis of Sanda Whipping-kick

【作者】 阴晓林

【导师】 赵光圣;

【作者基本信息】 上海体育学院 , 武术与民族传统体育, 2013, 博士

【摘要】 研究目的:鉴于散打鞭腿技术的重要性,以及在运动生物力学方面研究的缺失。为了更好地研究散打鞭腿动作的技术特征;打击效果;专项力量耐力特征;关节肌力特征;肌电活动特征;运动学特征;动力学特征;为了更好地推广和发展散打运动以探讨不同水平散打运动员的异同;为散打科学化训练提供训练依据和理论指导。研究方法:实验对象:根据运动等级分为优秀组和普通组,每组均为13名散打运动员。实验仪器:VICON动作分析系统、Noraxon无线肌电测试系统、Kistler三维测力台、Noraxon同步信号器、测力靶、BIODEX等速测试系统。实验方案:整个实验分为VICON、无线肌电、三维测力台、测力靶的同步测试;30秒连击测试;等速测试三部分。采集数据:打击力度、打击次数、相对峰值力矩、相对平均功率、屈伸肌峰值力矩比、肌电均方根、肌肉贡献度、肌肉共激活、动作时间、关节线速度峰值及时间、关节角速度峰值及时间、膝关节最小角度及时间、膝关节最大角度及时间、关节转动能贡献度、支撑腿扭矩。研究结果:1.优秀组鞭腿动作的相对打击力度大于普通组,有极其显著性差异。右鞭腿动作的打击力度大于左鞭腿,低鞭腿有显著性差异。不同高度鞭腿动作的打击力度排序为低鞭腿>中鞭腿>高鞭腿,优秀组左低鞭与左高鞭、右低鞭与右高鞭有极其显著性差异,左中鞭与左高鞭有显著性差异。普通组右低鞭与右中鞭有显著性差异,右低鞭与右高鞭有极其显著性差异。2.30秒连击平均相对打击力度和打击次数优秀组均大于普通组,打击力度有显著性差异。前10秒、中10秒、后10秒平均相对打击力度和打击次数优秀组均大于普通组,后10秒打击力度有显著性差异。平均相对打击力度和打击次数排序为前10秒>中10秒>后10秒。打击次数优秀组前10秒与中10秒有显著性差异,前10秒与后10秒有极其显著性差异。打击次数普通组前10秒与中10秒、前10秒与后10秒有极其显著性差异。3.相对峰值力矩随速度的增加而下降,相对峰值力矩躯干屈肌60°/s、120°/s、180°/s普通组大于优秀组,其他的均小于优秀组,左髋伸肌60°/s、左髋屈肌180°/s、右髋屈肌180°/s、右膝屈肌120°/s、躯干伸肌180°/s有显著性差异,左髋屈肌120°/s、右髋伸肌120°/s有极其显著性差异。4.相对平均功率躯干屈肌60°/s、120°/s、180°/s和左膝伸肌60°/s普通组大于优秀组,其他的均小于优秀组,右髋伸肌60°/s、右髋屈肌120°/s、右膝屈肌180°/s有显著性差异,右髋伸肌120°/s和右膝屈肌120°/s有极其显著性差异。5.普通组与优秀组躯干120°/s屈伸肌峰值力矩比有显著性差异,躯干180°/s屈伸肌峰值力矩比有极其显著性差异,其他的没有显著性差异。6.鞭腿动作激活程度和贡献度较大的肌肉是左、右股直肌和左、右腓肠肌外侧头。左、右膝关节和左、右踝关节拮抗肌均出现了共激活,打击腿踝关节拮抗肌的共激活程度最大。7.鞭腿动作时间优秀组均小于普通组,左中鞭腿、左高鞭腿有显著性差异,右中鞭腿有极其显著性差异。8.关节线速度峰值踝>膝>髋,关节线速度峰值优秀组均大于普通组,左低、左中鞭腿髋,右低、右中、右高鞭腿膝,右中、右高鞭腿踝有显著性差异。左高鞭腿髋,左低、左中、左高鞭腿膝,左低、左中、左高鞭腿踝有极其显著性差异。髋、膝线速度峰值分别在动作时间的60%左右和80%左右出现。9.膝的角速度峰值均大于髋,角速度峰值右中鞭腿膝优秀组小于普通组,其他的均大于普通组,左低鞭腿膝有极其显著性差异。髋的角速度峰值比膝的角速度峰值出现的早。10.打击腿膝关节的最小、最大角度分别在70°左右和140°左右,打击腿膝关节最小、最大角度分别在动作时间的70%左右和95%左右出现。11.髋的转动能贡献度小于膝,优秀组右中鞭腿髋的转动能贡献度大于普通组并有显著性差异,优秀组右中鞭腿膝的转动能贡献度小于普通组并有显著性差异,其他的没有显著性差异。12.支撑腿扭矩第一峰值优秀组大于普通组,没有显著性差异。扭矩第二峰值除了左、右高鞭腿优秀组小于普通组,其他的均大于普通组。扭矩第一、第二峰值分别在动作时间的20%左右和80%左右出现。结论:1.优秀散打运动员鞭腿动作的打击效果均优于普通运动员;散打运动员右鞭腿的打击效果优于左鞭腿;散打运动员不同高度鞭腿打击效果的排序为低鞭腿>中鞭腿>高鞭腿。影响鞭腿打击效果的因素主要包括:打击腿的动作速度、打击腿的关节线速度、打击腿和支撑腿的关节肌力、支撑腿的积极扭转、肌肉的协调能力以及动作的协调性等。2.优秀散打运动员的力量耐力和速度耐力均好于普通运动员。优秀运动员鞭腿动作的连续打击能力好。训练中应重视散打运动员力量耐力和速度耐力的训练。3.优秀运动员除了腹部的肌肉力量和肌肉做功能力小于普通运动员外,其他部位的肌肉力量和肌肉做功能力都优于普通运动员。肌肉力量是提高散打运动员鞭腿打击效果的物质基础,应重视散打运动员最大力量和速度力量的训练。散打运动员膝关节的稳定性随着运动速度的增加而下降,应重视膝关节稳定性的训练。4.散打鞭腿动作激活程度和贡献度较大的肌肉是左、右股直肌和左、右腓肠肌外侧头,力量训练中应重视这些肌肉的训练。优秀运动员的肌肉激活程度和肌肉贡献度相对合理。5.优秀运动员的动作速度比普通运动员快。优秀运动员打击腿各关节的线速度峰值和角速度峰值均大于普通运动员。鞭腿动作打击腿膝关节的最小角度在70°左右,最大角度在140°左右。6.鞭腿动作打击腿膝关节的转动能贡献度大于髋关节,应重视膝关节肌肉的训练,兼顾髋关节力量的训练。鞭腿动作的支撑腿出现了两次扭矩峰值,鞭腿动作支撑腿的积极扭转有利于加大打击腿的打击效果和动作速度。7.打击效果、关节肌力、动作速度、关节线速度和角速度、肌肉激活程度和贡献度、支撑腿的扭矩、打击腿的膝关节角度等可以用来综合评价散打运动员鞭腿技术的优劣。综合评价,优秀运动员的鞭腿技术好于普通运动员。

【Abstract】 Objective:Given the importance of whipping-kick techniques in Sanda and the lack ofresearch on sports biomechanics. In order to study the technical characteristics ofwhipping-kick action in Sanda better; combat effects; endurance characteristics ofspecific strength, speed, endurance, and joint muscle strength characteristics;neuromuscular activity characteristics; kinematic characteristics; dynamiccharacteristics; in order to promote and develop Wushu Sanda exercise and explorethe similarities and differences of Sanda athletes at different levels; providingevidences and theories for scientific training about Sanda. This article will use themultifunctional force targets, isokinetic dynamometry, action analysis ofelectromyogram telemetry systems, wireless systems, and a three dimensionalmeasuring instruments of experimental study on different of Sanda athletes whip-kicktechnique at sports levels. Using biomechanical knowledge to study the technicalcharacteristics of the whip leg movement in Sanda, neuromuscular characteristics andspecial forces combat effectiveness, providing rationale and data support for scientifictraining in Sanda.Research methods:Subject: According to Sanda campaign levels, we divide it into outstandinggroup and common group, each group has13athletes.Experimental instruments: VIVON motion analysis system, Noraxon system,wireless EMG test system, Kistler three-dimensional force platform, dynamometerstation synchronization signal of Noraxon, force measurement target, BIODEXisokinetic testing system.Experimental program: the entire experimental test is divided into three parts:VICON, Wireless EMG,3-D force platform, synchronous test of force measuringtarget;30seconds continuous hitting test; isokinetic testing.Data collection: the hitting strength, the number of strikes, the relative peaktorque, relative to the average power of flexor and extensor peak torque ratio, EMGrms, muscle contribution, muscle co-activator, operating time, the peak peak valueand time ratio of the joint line speed, the peak value and time ratio of joint angularvelocity, the minimum angle and time ratio of knee joint, the maximum angle and thetime ratio of knee angle, the contribution of joint rotational energy, support legstorque and time ratio. Research results:(1) The relative strikes strength of whipping-kick action about excellent group isrelatively bigger than normal group, and there are very significant differencesbetween the two groups. The right whipping-kick strength is bigger than left leg andthere exists significant differences between low whip legs. Sorted by strikes atdifferent height of whipping-kick movements: low whipping-kick leg> middlewhipping-kick leg> high whip leg, there are significant differences between left lowwhipping-kick leg and left high whipping-kick leg in excellent group, and right lowwhipping-kick leg and right high whipping-kick leg have extremely significantdifferences, left middle whipping-kick leg and left high whipping-kick leg havesignificant differences. The ordinary group has significant differences in the right lowwhipping-kick leg and right middle whipping-kick leg, right low whipping-kick legand right high whipping-kick leg have extremely significant differences.(2) For average relative strikes and numbers of30seconds continuous batter,excellent group is greater than normal group, there are significant differences in strikestrength. The average relative strikes strength and numbers of excellent group in first10seconds, middle10seconds, last10seconds is bigger than normal group, the last10seconds of strikes strength has significant differences. Ranked by the averagerelative strikes strength and numbers: first10seconds>middle10seconds>lastseconds. The strike frequency of excellent group in first10seconds and middle10seconds has significant difference significant difference, first10seconds and last10seconds have extremely significant difference. The strike frequency of ordinary groupin first10seconds and middle10seconds, first10seconds and last10seconds haveextremely significant differences.(3) Relative to peak torque decreases with the speed increases, and the relativeto the peak torque trunk flexors60°/s,120°/s,180°/s of ordinary group isgreater than excellent group, others are less than excellent group, left hip extensor60°/s, the left hip flexor180°/s, right hip flexor180°/s, the right knee flexors120°/s, the trunk extensor180°/s have significant differences, the left hip flexors120°/s and right hip extensor120°/s have extremely significant differences.(4) Relative to the average power trunk flexors60°/s,120°/s,180°/s, leftknee extensor60°/s of ordinary group is greater than the excellent group, others areless than excellent group, right hip extensor60°/s, right hip flexor120°/s, rightknee flexors180°/s have significant differences, right hip extensors1.2°/s andright knee flexors120°/s have very significant differences. (5) The trunk120°/s flexion and extension muscle peak torque ratio of normalgroup and excellent group have significant differences, the Torso of180°/s flexionand extension muscle peak torque ratio of the two groups have extremely significantdifferences, others have no significant differences.(6) The biggest activation extent and contribution of muscles duringwhipping-kick leg movement is left rectus femoris, right rectus femoris, left lateralhead of gastrocnemius and right gastrocnemius lateral head. The antagonistic musclesof both knee joint and ankle joint shows co-activator phenomenon. The support leg’sankle joint has bigger co-activator extent.(7) Excellent group has shorter time than normal group during whipping-kick legmovement, left middle whipping-kick leg, left high whipping-kick leg havesignificant difference, right middle whipping-kick leg have extremely significantdifferences.(8) Line speed peak value: ankle> knee> hip, the joint line peak velocity ofexcellent group is higher than normal group, there are extremely significantdifferences in left low, left middle whipping-kick leg’s hip, right low, right middle,right high whipping-kick leg’s knee, left low, left middle, left high whipping-kickleg’s ankle. The line speed peak value about hip and knee is probably shows around60%and80%of the total operating time, the elite group and normal group there is nosignificant differences.(9) The knee’s angular velocity peak value is bigger than hip, the angularvelocity peak value of the right middle whip leg’s knee for excellent group is smallerthan normal group, others are bigger than normal group, left low whip leg’s knee hasvery significant differences. The angular velocity peak value of hip appears earlierthan knee.(10) The minimum, maximum angle of against leg knee is respectively around70°and140°, minimum and maximum angle of against leg appears about70%andabout95%in total operating time.(11) The hip’s rotational energy contribution is less than knee, rotational energycontribution on whipping-kick leg’s hip of excellent group is bigger than normalgroup and it has significant differences, rotational energy contribution onwhipping-kick leg’s knee of excellent group is less than normal group, it hassignificant differences, others has no significant differences.(12) Supporting leg’s first torque peak value in excellent group is bigger thannormal group and there is no significant difference. Except right and left whipping-kick legs, the second torque peak value of excellent group is less thannormal group; others are bigger than normal group. The first and second torque peakvalue appears around20%and80%of total operating time.Conclusion:1. The whipping-kick leg strikes effectiveness of excellent Sanda athletes is betterthan ordinary athletes; the strike effectiveness of right whipping-kick leg is betterthan left; the sequence of whipping-kick leg strike effectiveness at different height islow whipping-kick leg> middle whipping-kick leg> high whipping-kick leg. Factorsaffecting combat effectiveness include movement speed, the link line speed, musclestrength, muscle coordination ability and so on.2. Excellent Sanda athletes’ power endurance and speed endurance are better thanordinary athletes; compared with normal athletes, elite athletes have better continuousstrike capability in whip movements.3. Except abdominal strength and abdominal work capacity of elite athletes areless than ordinary athletes, elite athletes’ other parts of the muscle strength andmuscle work capacity are better than ordinary athletes. The stability of Sanda athletes’left and right knees decreases with movement speed increases, thus we should paymore attention to train knees’ stability.4. The bigger activation and contribution of muscles on whipping-kick action isleft rectus femoris, right rectus femoris, left gastrocnemius and right gastrocnemius,so athletes should attach importance muscle training. Excellent athletes’ activationand contribution of muscles is relatively reasonable.5. Elite athletes’ movement speed is faster than normal athletes. The linearvelocity and angular velocity peak about excellent athletes’ whipping-kick leg jointsare bigger than normal athletes; the minimum knee angle of whipping-kick leg isabout70°, the maximum angle of whipping-kick leg is about140°.6. The knee rotational energy contribution during whipping-kick movements isgreater than the hip. The support legs in the whipping-kick action appears twice thepeak torque value, the first peak torque is greater than second. The positive reverse ofsupport during whipping-kick movements is helpful to increase whipping-kickeffectiveness and movement speed.7. Combat effectiveness, joint muscle strength, movement speed, part of thelinear velocity and angular velocity, the degree of muscle EMG activation and thecontribution of the supporting leg torque, combat leg knee angle can be used to evaluate the pros and cons of Sanda whipping-kick leg. Comprehensive evaluation ofelite athletes’ whipping-kick technology is better than ordinary athletes.

  • 【分类号】G804.6;G852.4
  • 【被引频次】3
  • 【下载频次】958
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络