节点文献

高超声速飞行器防热壁板气动热弹性耦合建模与分析

Coupled Aerothermoelastic Modeling and Analysis of Thermal Protection Panel for Hypersonic Vehicles

【作者】 程兴华

【导师】 杨涛;

【作者基本信息】 国防科学技术大学 , 航空宇航科学与技术, 2012, 博士

【摘要】 气动热弹性耦合分析是高超声速飞行器研制过程中亟待解决的难题,直接服务于飞行器热防护系统的设计,关系到飞行器的控制性和稳定性,影响飞行姿态和弹道,并最终制约着高超声速飞行器的总体性能。由于气动力、气动热和结构等各子学科之间的相互耦合作用突出,气动热弹性不能分割开来进行单独简化求解,已成为高超声速飞行器研究的热点方向。本文以类乘波体高超声速飞行器防热壁板为应用对象,采用分区耦合求解思想,系统开展了气动热弹性耦合建模与分析,取得了相应的研究成果。(1)建立了气动热弹性耦合物理模型和求解模型,分析了气动力、气动热、结构之间的耦合机理,提出了分区耦合求解的时域推进算法。(2)研究了多场耦合边界的数据接口技术。分析了高精度常体积转换法(CVT)的四面体构造原则,基于点-三角形位置关系提出了一种改进的数据交换算法——内投影常体积转换法(IPCVT),能够很好的抑制边界网格严重重叠或间隙时CVT算法的不稳定,适用于多场耦合中的边界数据交换。(3)提出了类乘波体高超声速气动力/热工程计算方法。首先采用片条法将三维类乘波体简化为二维外形,接着基于薄激波层理论计算片条表面气动力和激波形状,然后根据沿流管质量守恒定律得到边界层外缘熵和其他气动参数,最后由气动加热工程计算公式求取壁面气动加热热流密度。上述方法能够考虑熵层对气动力/热的影响,具有较好的精度,适合气动热弹性耦合分析等复杂问题的研究。(4)完成了类乘波体复合材料盖板式热防护系统设计。首先为快速热分析建立了具有很好精度和效率的一维热网络模型;接着完成了防热层结构设计、隔热层厚度优化设计;然后对防热盖板的热、力性能进行了校核;最后分析了防热壁板的固有特性,为气动热弹性耦合分析建立了物理、数值模型。(5)详细研究了气动热弹性耦合求解技术。首先,基于活塞理论提出了气动力-位移耦合计算方法,确定了近似阶次的选取,分析了壁板法向扰动速度对耦合响应的影响;接着研究了瞬态气动加热-温度场耦合计算策略,提出了耦合参数的计算方法,提高了耦合分析的效率;最后根据温度场-结构位移场耦合作用原理,提出了顺序耦合的求解方法。(6)对防热壁板气动热弹性耦合响应进行了深入分析和应用研究。首先在分析气动加热时间步长对耦合响应影响的基础上,提出了气动加热时间步长自适应方法,使气动加热计算的时间点更为合理,提高了计算效率和精度;然后研究了耦合度和刚体气动力时间步长对准静态气热弹耦合响应的影响;最后完成了“双轴”连接件设计,可在防热壁板边缘小变形条件下,显著降低连接孔处局部最大剪切应力,适用于盖板式热防护系统的安装。本文工作是高超声速气动热弹性耦合分析技术在类乘波体飞行器上的一次创新性应用,为其他高超声速飞行器气动热弹性问题的研究提供了思路,某些方法、结论可直接应用于其他工程领域中,具有较强的工程实用性与推广性。

【Abstract】 The coupled aerothermoelastic analysis is a urgent mission for the thedevelopment of hypersonic vehicle, and directly supports the design of thermalprotection system.Associated with the control and stability, the aerothermoelasticperformance impacts flight attitude and trajectory, and restrict the overallperformance of hypersonic vehicle. Because of the strong interactions amongsub-disciplines, such as aerodynamic pressure, aerodynamic heating and elastic, theaerothermoelastic coupling couldn’t be solved separately, and has become a hotdirection in hypersonic domian. This dissertation, focusing on the thermal protectionpanel of quasi-wavrider hypersonic vehicles, explores coupled aerothermoelasticmodeling and analysis based on the partitioned method. The results attainted are asfollows.(1) Based on the establishing of the aerothermoelastic physical model andsolution model, the coupled mechanics among aerodynamic pressure, aerodynamicheating and structure are analysed, and a temporal evolution algorithm is put forwardfor partitioned simulation.(2) The data interface for multiphysics is explored. The construction principle oftetrahedron in constant volume transfer(CVT) method is explored. Then based on therelationships between point and triangle, an improved data exchange algorithm,namely Inside Projective Constant-Volume Tetrahedron (IPCVT), is proposed, withwhich the algorithm unstability of CVT is well suppressed at great overlaps or gaps ofboundary meshes. It is manifested that IPCVT is applicable for the boundary dataexchange in multiphysics interaction.(3) The engineering calculation method of hypersonic aerodynamic pressure andaerodynamic heating for quasi-wavrider vehicles is put forward. First, the3-Dquasi-wavrider figure is simplified into2-D figure by strip theory, which is followedby calculating the aerodynamic pressure and the shock shape along the strip surfacebased on thin shock layer theory. Then, the entropy and other aerodynamic parameterson the boundary layer edge is achieved according to the mass conservation along theflow pipe. Finally, the aeroheating flow rate is gained by the engineering aerodynamicheating formula. Including the effects of entropy layer, this method has excellentaccuracy, and is appropriate for complex problem such as coupled aerothermoelasticanalysis.(4) The composite cover thermal protection system(CCTPS) for quasi-wavrideris designed. First, a accurate and efficient1-D thermal network is established for rapidthermal analysis. Secondly, the structure of thermal protection layer and thickness ofthermal insulation layer are designed. Then, the thermal and mechanical performancesof the CCTPS is checked. Finally, the characters of the thermal protection panel are analysed for the physical and numerical models of coupled aerothermoelasticanalysis.(5) The techniques of coupled aerothermoelastic analysis are explored in detail.Firstly, based on the piston theory, a solution method for coupled aerodynamicpressure-displacement is proposed with definite rank of approximate expression, andthe influence of panel normal disturbance velocity on coupled response isinvestigated. Secondly, the strategy of coupled transient aeroheating-temperature fieldis analysed, and a method for coupled parameters is put forward for the efficiency ofcoupled analysis. Finally, according to the interaction principle between temperaturefield and structure displacement field, a sequent coupled solution method is proposed.(6) Further analysis and applications of the coupled aerothermoelastic responseare accomplished for the thermal protection panel. First and foremost, based on theinfluence of aeroheating time step on the coupled response, the adaptive aeroheatingtime step method is presented, with which the occasion of aerodheating calculation isso reasonable that the efficiency and accuracy are improved greatly. Besides, how thecoupled degree and rigid body aerodynamic pressure time step affect the coupledresponse of quasi-static aerothermoelastic is discussed. Last but not the least, the“biaxial” connector is designed for releasing the local severe shear stress near theattachment with little panel edge deformation, and can be used to install the CCTPS.The research of this dissertation is a innovative application of coupledaerothermoelastic technique on quasi-wavrider hypersonic vehicles, which couldprovide some relative analysis and demonstrating methods for other hypersonicvehicles with severe aerothermoelastic problem. Moreover, some methods andconclusions can be generalized to other fields, with good engineering practicabilityand populazation.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络