节点文献

东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用

The Intermediate-acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Moutains

【作者】 高永宝

【导师】 李文渊;

【作者基本信息】 长安大学 , 矿产普查与勘探, 2013, 博士

【摘要】 地球动力学演化过程与成矿作用是当今矿床学研究的前沿,而有关幔源岩浆活动及有关岩浆混合作用与大陆形成演化、大规模成矿作用的关系受到越来越广泛的重视。祁漫塔格作为青藏高原北部的重要组成部分,地处阿尔金、东昆仑、柴达木地块相互交织的“构造结”,大致经历了太古宙-古元古代古陆核形成、新元古代古大陆裂解与超大陆汇聚、早古生代-晚古生代早期洋陆转换、晚古生代-早中生代洋陆转换及中新生代陆内叠覆造山等不同阶段,与古生代-早中生代岩浆活动有关的内生金属矿产资源十分丰富,研究程度较低。本文以板块构造演化和造山作用研究为基础,选择区内典型中酸性侵入岩及其相关矿床为研究对象,开展祁漫塔格地区中酸性侵入岩浆活动与成矿作用研究,揭示成矿系统发育机制、成矿物质聚集过程和成矿机理,初步建立以壳-幔相互作用为主的区域构造-岩浆-成矿模型,总结不同类型矿床找矿标志,根据地质及地球物理、地球化学信息,提出找矿远景地区。取得以下主要进展和成果:1.长城纪小庙岩组为矽卡岩-云英岩-石英脉型钨锡矿床的主要赋矿层位,也是其重要的矿源层;蓟县纪狼牙山组为层控矽卡岩型铅锌矿床的赋矿层位,为成矿提供了部分成矿物质,层间碳酸盐岩也是铅锌富集成矿的关键因素;奥陶纪祁漫塔格群(滩间山群)和石炭纪缔敖苏组等是区内矽卡岩型铁多金属矿床的主要赋矿层位,其中祁漫塔格群(滩间山群)可能为成矿提供了部分成矿物质。2.区内与中酸性侵入岩浆活动有关的主要矿床类型包括矽卡岩-云英岩-石英脉型钨锡矿床、斑岩型铜钼矿床、矽卡岩型铁铜铅锌多金属矿床、层控矽卡岩型铅锌矿床及与碱性花岗岩有关稀有矿床等,成矿时代主要为早古生代、晚古生代早期、早中生代,与早古生代-晚古生代构造-岩浆旋回、晚古生代-早中生代构造-岩浆旋回密切相关。3.志留纪(429~430Ma)北东向分布的英云闪长岩-二长花岗岩类以A型花岗岩为主,与矽卡岩-云英岩-石英脉型钨锡成矿(白干湖、戛勒赛等)密切相关,成矿时代为(427±13)Ma,成矿物质主要来源于地壳,成矿流体具岩浆水特征,为中高温、中盐度、低密度的NaC1-H2O-CO2体系,流体的不混溶作用是石英脉型矿体形成的主要因素。4.早-中泥盆世(385~410Ma)花岗闪长岩-石英闪长岩-二长花岗岩类与区内的矽卡岩型铁多金属成矿(野马泉北带等)密切相关,以I型花岗岩为主。成矿物质及成矿流体主要来源于区内岩浆活动。5.与斑岩型铜钼(卡而却卡等)、矽卡岩型铁多金属(尕林格等)、层控矽卡岩型铅锌(维宝、虎头崖等)成矿密切相关的主要为中-晚三叠世(212~242Ma)花岗闪长岩-石英闪长岩-二长花岗岩-花岗岩类,以I+A型花岗岩为主,碰撞-后碰撞阶段的地幔底侵、古老陆壳重熔是其主要成因。卡而却卡矿区花岗闪长岩、暗色包体、似斑状二长花岗岩岩石学、地球化学、Sr-Nd-Hf同位素及锆石U-Pb年龄均较为相似,εNd(t)为-5.3~-4.2,εHf(t)为-8.6~-1.6,具有壳幔物质混合的特征,可能是由于壳幔岩浆混合均一化作用而成。卡而却卡斑岩型矿床辉钼矿Re-Os模式年龄为(245.5±1.6)Ma,成矿物质具有壳幔混合来源,成矿流体主要来源于岩浆热液,具高温、高盐度的特征,流体的沸腾作用对成矿具有一定的贡献。矽卡岩型矿床(尕林格)成矿物质也具有壳幔混合来源,中高温岩浆热液与地层的水岩反应是矽卡岩型铁多金属成矿的主要因素。层控矽卡岩型铅锌矿床(维宝、虎头崖)成矿流体为岩浆流体体系,富含CO2、CH4,具中温、高盐度的特征,局部地区加入大气降水(如虎头崖),成矿物质也具有壳幔混源特征。6.晚三叠纪末(~210Ma)形成于碰撞后环境的碱性花岗岩与稀有矿化(于沟子)关系密切,为A型花岗岩,烧绿石、褐帘石等是稀有、稀土元素的主要含矿矿物。7.对祁漫塔格地区构造-岩浆-成矿作用进行了梳理,并总结了不同类型矿床的找矿标志,在此基础上,综合地球物理、地球化学信息,提出白干湖-戛勒赛W、Sn找矿远景区,滩北雪峰-乌兰乌珠尔Cu、Fe多金属找矿远景区,维宝-野马泉-哈西亚图Fe、Cu、Pb、Zn多金属找矿远景区,卡而却卡一带Cu、Fe、Mo找矿远景区,野牛沟-土窑洞Fe、稀有找矿远景区等5个找矿远景区。

【Abstract】 Geodynamic evolution process and metallogeny is an essential research field all over theworld. Meanwhile it has been drawn more attentions to the relationship betweenmantle-derived magmatism, magma mixing and continental evolution, large-scale metallageny.Qimantag region, as an important part of northern Tibetan Plateau, is located in the structuralknot of Altyn, East Kunlun, Qadam block, and has experienced five tectonic evolutionarystages: craton formation in Archean-Palaenproterozoic era, palaeocontinental break-up andsupercontinent coverging in new Proterozoic era, ocean-continent transition in earlyPaleozoic-early late Paleozoic era and late Paleozoic-early Mesozoic era, incontinentaloverprinted orogeny in Meso-Cenozoic era. The metallic ore deposits in this aera are relatedwith magmatism, especially Paleozoic-early Mesozoic magmatism. The degree of research onmagmatism and mineralization is very low. Regarding typical intermediate-acid intrusiverocks and related deposits as research objects, the paper studies on relationship betweenintermediate-acid intrusive magmatism and metallageny in Qimantag area, revealsmetallagenic system developmental mechanism, metallogenic material aggregation processand metallogenic mechanism on the basis of theory of plate tectonic evolution. After buildingregional structure-magma-metallogenic model mainly with crust-mantle interaction andconcluding prospecting criteria of different types of deposits according to geological,geophysical and geochemical information, the paper presents prospective areas. Mainprogresses and achievements are as follows:1. The main ore-bearing strata of skarn-greisen-quartz vein type tungsten-tin deposits isXiaomiao Formation in Changcheng Period which is important source bed of W, Sn.Liangyashan Formation in Jixianian Period provides parts of mineralizing materials, and isthe ore-bearing horizon of layered skarn type Pb-Zn deposits. And interlayer carbonate is alsothe key factor of Pb-Zn enrichment. The skarn-type iron-polymetallic deposit often occurs inQimatag Group (Tanjianshan Group) in Ordovician and Di’aosu Group in Carboniferous, andQimatag Group (Tanjianshan Group) probably provided parts of mineralizing materials.2. Main types related with intermediate-acid intrusive magmatism includeskarn-greisen-quartz vein type tungsten-tin deposits, porphyry Cu-Mo deposits, skarn type Fe-Cu-Pb-Zn polymetallic deposits, layered skarn type Pb-Zn deposits and some rare-elementand REE deposits with alkali granites. The metallogenic epochs are early Paleozoic, latePaleozoic, early Mesozoic eras, which are closely related to the early Paleozoic-late Paleozoictectonomagmatic cycle and the late Paleozoic-early Mesozoic tectonomagmatic cycle.3. The tonalites and monzogranites are A-type granites forming in Silurian (429~430Ma),and are closely related to the skarn-greisen-quartz vein type W-Sn mineralization.Metallogenic epoch was427±13Ma. The main ore forming materials were derived ultimatelyfrom the crust. Ore-forming fluid shows some characteristics of magma water and belongs toNaC1-H2O-CO2system with medium-high temperature, middle salinity and low density. Theimmiscibility of fluids is the main factor to form quartz-vein type ore bodies.4. The Early-Middle Devonian granodiorites, quartz diorite, and monzogranites,dominating by I type granite, are related with skarn-type iron-polymetallic deposits. The mainore forming materials and fluid are derived from magmatic activity.5. Porphyry type Cu-Mo deposits, skarn type Fe polymetallic and layered skarn typePb-Zn deposits are closely associated with the granodiorites, quartz diorites, monzogranites,which belong to I+A type granites. The chief genesis is mantle underplating and remelting ofancient continental crust. The petrology, geochemistry, Sr-Nd-Hf isotope and Zircon U-Pb ageof granodiorite, dark enclaves, porphyaceous monzogranites are similar in Kaerqueka oredistrict, with εNd(t)(-5.3~-4.2) and εHf(t)(-8.6~-1.6). These features indicate that there maybe homogenization magma mixing during the process of crustal and mantle materials mixing.The Re-Os model age of porphyry type Cu-Mo deposits in Kaerqueka is245.5±1.6Ma.And the ore forming materials of porphyry type Cu-Mo deposits in Kaerqueka origins fromcrust and mantle. The ore-forming fluid is derived from magmatic hydrothermal activityfeatured by high-temperature and high salinity. The boiling of ore-forming fluid contributes tomineralization. The ore-forming materials of skarn type deposits, such as Galinge, have themixing sources of crust and mantle. The mineralization is related with the reaction betweenmid-high temperature magmatic hydrothermal liquid and wall-rocks. The ore-forming fluid oflayered skarn type Pb-Zn deposits is magma fluid system enriching in CO2and CH4, withcharacteristics of middle-temperature, high salinity. The meteoric water is partly mixed inlocal areas, such as Hutouya. The ore forming materials are also from both of crust and mantle.6. The alkali granites, A-type granite, is formed in post-collisional extensionalenviorment at the end of late Triassic era (~210Ma), and is closely related with rare elementsand REE mineralization, whose major ore minerals are pyrochlore and allanite.7. After organizing the tectonic-magmatic-mineralization model and concludingprospecting criteria of different types of deposits, the paper proposes five prospecting areassynthesizing geophysical and geochemical informations: Baiganhu-Galesai W-Sn prospectingarea, Tanbeixuefeng-Wulanwuzhuer Cu-Fe polymetallic prospecting area,Weibao-Yemaquan-Haxiyatu Fe-Cu-Pb-Zn polymetallic prospecting area, KaerquekaCu-Fe-Mo prospecting area and Yeniugou-Tuyaodong Fe, rare elements and REE prospectingarea.

  • 【网络出版投稿人】 长安大学
  • 【网络出版年期】2014年 07期
  • 【分类号】P588.12;P611
  • 【被引频次】8
  • 【下载频次】524
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络