节点文献

刺激响应性凝胶耦合非线性化学反应体系的时空动力学

Spatiotemporal Dynamics of Nonlinear Chemical Systems Coupling with Stimulus-responsive Gels

【作者】 路兴杰

【导师】 高庆宇;

【作者基本信息】 中国矿业大学 , 应用化学, 2013, 博士

【摘要】 耦合体系中远离平衡态的非线性时空动力学行为广泛存在于自然界中,对其研究有助于我们理解自然界中的复杂生化时空自组织行为生成和演化机理。本论文以嫁接了BZ反应催化剂的高分子软物质凝胶为反应-扩散载体,探索了高分子凝胶介质中非线性化学反应发生时,耦合体系整体远离非平衡态条件下的时间和空间上的自组织行为,如凝胶自发的发生类似于自然界中动植物所具有的向光和避光运动、多尺度化学脉冲波和各种复杂时空斑图等。本论文通过实验现象、机理解释和数值模拟方面对钌催化Belousov-Zhabotinsky (BZ)反应凝胶体系(即BZ凝胶)中的复杂时空动力学行为进行系统的分析研究。在具体实验中,首先合成具有双键的钌催化剂,将其与聚合物水凝胶接枝共聚,再与BZ反应耦合作用,得到具有光敏特性的自振荡凝胶反应-扩散系统,凝胶介质中的非线性振荡反应过程耦合扩散过程可以形成丰富的时空动力学行为。聚合物空间网络结构有效消除了对流效应对反应-扩散过程的影响,使我们能够系统而全面地研究耦合体系的时空动力学行为。首先研究了一维毛细管中的钌催化BZ凝胶耦合BZ反应体系,在单向反应-扩散过程中,随着反应底物的消耗和扩散,所形成的化学脉冲波的传播距离呈现多尺度周期性变化趋势,随着时间的推移,传播模式从简单振荡(周期1,P1)逐渐过渡到周期2(P2)、周期4(P4)和周期8(P8),再经过一段时间的混沌状态传播模式(Chaos),逐渐演化为周期16(P16)传播模式。在实验中发现溴酸盐调制化学脉冲波时空动力学行为效果显著,随着溴酸盐浓度的增大,化学脉冲波传播形式从继发振荡传播模式(Bursting Wave)开始,逐渐演化为周期1(P1),周期2(P2),周期4(P4),周期8(P8)和周期16(P16),并且当溴酸盐浓度增大到112mM以后,BZ凝胶介质中会呈现脉冲和氧化稳态的混合态(Mixture of Oxidized Steady State and Pulse Waves)。改变其它反应底物浓度实验参数,也能有效调制化学脉冲波多尺度传播动力学行为。同时通过均相对比实验,发现相同实验参数条件下如果没有扩散,均相体系振荡行为是简单振荡,这说明扩散在整个多尺度传播模式中发挥重要作用。另外测试了一维凝胶中不同位置的动力学行为,发现在扩散距离不同的条件下,不同局点动力学行为不同,这也再次验证了振荡体系的扩散与反应的耦合导致的物质浓度梯度分布是一维凝胶介质中多尺度脉冲波产生的根本原因。所以,振荡介质和稳定的浓度梯度这两个特征说明了我们研究的化学脉冲波属于相波,是由稳定的相梯度引起的。通过五变量俄勒冈模型(Five-variable Oregonator Model)数值模拟重现了实验现象特征,验证了相关反应扩散实验机理。通过实验和模拟,为我们理解自然界中多尺度生化物理现象提供了很好的启示,促进了对自然界中生物发育等各种复杂时空结构形成机理的理解的理解,而且在此基础上设计的复杂时空动力学自组织模式也有可能应用于现实中。另外一方面,光敏性的Ru(bpy)3接枝共聚于聚合物凝胶分子链上形成BZ凝胶,在没有外部刺激的条件下由于催化剂在氧化态和还原态之间周期性的转变,导致凝胶分子链间的亲水和斥水性变化,在控制好交联剂密度的条件下可以表现出凝胶体积的周期性膨胀和收缩行为。而作为BZ反应的催化剂还具有独特的光敏特性,在一定的光照条件下,激发态的Ru(bpy)32+﹡可以发生两种不同的光化学反应过程:分别产生抑制剂(Br-)和活化剂(HBrO2)。这就为我们光控BZ凝胶宏观动力学行为提供了可操作性。不同光效应导致凝胶中化学脉冲波的产生频率产生差异。通过差异性光照,调制凝胶介质中化学脉冲波的频率,使凝胶内部动力学行为受到影响,从而控制凝胶受力平衡,实现凝胶的定向移动。实验发现凝胶的运动方向与凝胶介质中化学脉冲波的频率密切相关,凝胶倾向于化学脉冲波频率高的方向移动。通过均相实验发现了光强增大过程中,BZ振荡频率先增大后减小的规律,利用此规律,分别在光诱导区间和光抑制区间实施差异性光照,最终实现了光敏性BZ凝胶发生类似于自然界中动植物所具有的趋光和避光运动。另外,我们还研究了在不同实验参数条件下二维凝胶介质中的时空动力学行为,发现光照和机械力都能作为有效扰动因素改变耦合体系的复杂自组织动力学行为。通过两变量光敏俄勒冈模型(Two-variable Oregonator Model)数值模拟了光照对BZ反应的影响,数值模拟结果和实验现象符合的很好,这在机理解释上也提供了合理的依据。本课题通过将光敏性的BZ反应催化剂嫁接于高分子软物质分子链上,巧妙的将BZ反应和软物质有机的耦合在一起,来开展反应-扩散介质中的时空斑图动力学和光控光敏性凝胶定向运动动力学行为研究。建立起了能研究贴近自然界中的复杂耦合体系时空动力学行为载体,通过相关实验和模拟工作为设计智能响应性软物质提供了很好的启示。

【Abstract】 Stimuli-responsive soft materials coupling with nonlinear chemical reaction are thesuitable mediums for studying the spatiotemporal dynamics of self-organizing behaviors.The coupling system away from non-equilibrium conditions can show many nonlinearspatio-temporal dynamic phenomenons, such as chemical pulse waves, self-oscillation ofvolume changes and complex patterns. This paper mainly focuses on the experimentalphenomena, mechanism explanation and numerical simulation of the spatio-temporaldynamical behaviors in the ruthenium catalyzed Belousov-Zhabotinsky (BZ) gel system. Inexperiment, the catalyst (Ru(bpy)3) with double bond was graft copolymerized with thepolymer chains. Polymer network structure can effectively eliminate the convection effectduring the reaction-diffusion process. It’s feasible to get the stable spatio-temporaldynamics. We can get this functional gels coupled with BZ reaction and monitored thespatio-temporal dynamical behaviors at different experiment conditions.We first synthesized the BZ gel in one-dimensional capillary, with one end opened and theother sealed. Once the “dead-end” capillary filled with BZ gel touched with BZ solution.Wave initialized from the open end of the tube traveled a finite distance before dissipating.Remarkably, the propagation distance of successive waves was not constant but ratherexhibited complex patterns: multiple-length-scale propagation modes of chemical pulse wavesstarted with P1and evolved orderly to P2, P4, P8and P16with [NaBrO3]0increased, and finallypropagated into mixed waves. Our results demonstrated that the concentration of NaBrO3canbe used as control parameter to modulate the bifurcations of period-doublingmultiple-length-scale propagation modes. The spatiotemporal patterns were reproduced by areaction-diffusion model using the5-variable Oregonator model for the BZ kinetics. In thesimulate course, we modulated the period of chemical pulse waves by increasing A0(theconcentration of BrO3-). We can see that there is also an evolution of period-doublingbifurcation phenomena with A0increased, which is in complete agreement with theexperimental results. The propagation modes evolved from simple to complex. Change otherexperimental parameters can also modulate the spatio-temporal dynamics. Our works aretrying to set up a useful model system not only for studying the nonlinear chemical dynamics,but also for understanding the multiple scale behaviors in nature. Such as the growth of plant,nutrients are diffusion-fed from the trunk and branches at multiple levels.On the other hand, the catalyst (Ru(bpy)3) grafted to the polymer molecular chains hasunique photosensitive characteristic. We further investigated the dynamic behavior ofhydrogels, in which Belousov-Zhabotinsky (BZ) reactions take place under the influence of irradiated light. BZ gels undergo a net displacement that is opposite to the propagation oftraveling waves, since these waves “push” the solvent away from the wave source. Amongregions of different oscillatory frequencies, the highest frequency determines the ultimatedirection of motion of the wave. So, we further studied changes in the frequency of theoscillating reaction upon irradiation of light with different intensities. It is found that thefrequency of the reaction first increases (photoinduction), before it decreases monotonouslyand finally becomes arrested (photoinhibition). Related photosensitive results are reproducedby a two-variable photosensitive Oregonator model. These photosensitive characteristics areused to design the experiment, in which differential irradiation of distinct segments of a BZgel is used to induce spontaneous motion either towards (phototropism) or away from(photophobism) brighter regions. These controlled behaviors are explained on the basis of theintensity-dependent frequency of the reaction, and related changes in the net displacement ofthe gel body (movement towards regions of higher frequency). The experiments andsimulations demonstrate that photosensitive gels can be experimentally controlled bymanipulating these two photoeffects. This approach may be helpful in designing intelligentsoft robots capable of executing bionic functions.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络