节点文献

型钢高强混凝土框架结构多尺度力学性能研究

Research on the Multi-scale Mechanical Performances of SRHSC Frame Structure

【作者】 陶清林

【导师】 郑山锁;

【作者基本信息】 西安建筑科技大学 , 结构工程, 2013, 博士

【摘要】 型钢混凝土组合结构以其刚度大、承载能力高、抗震性能优越等优点,成为高烈度设防地区高层、大跨、重载及高耸结构的首选结构形式。将高强混凝土用于型钢混凝土组合结构中,可实现两种材料间更好的协同工作,迎合了结构在垂直方向和水平方向的发展趋势,促成了优异的结构性能和良好的经济效益,但随之而来的是原有理论的局限性和不适用性,加之全球大震、巨震频发期的到来,对型钢高强混凝土(SRHSC)框架结构多尺度力学性能评价与震害损失期望分析迫在眉睫。论文以SRHSC框架结构为研究对象,采用物理模型试验、理论分析及数值模拟相结合的研究手段,探究了构件尺度的关键力学问题,揭示了地震损伤在诸尺度间的迁移规律,并建立了宏观尺度的地震损伤模型,实现了单体建筑震害损失期望分析。主要研究工作和研究结论有:(1)基于19榀SRHSC简支梁的力学性能试验,观察了诸试件的裂缝开展模式及破坏形态,揭示了影响梁力学性能的主要因素,探讨了混凝土强度、含钢率、剪跨比、荷载类型、剪切连接方式及翼缘宽度比对梁力学性能的影响规律,给出了不同连接方式下型钢与混凝土界面间的剪切计算方法,提出了短期荷载效应下梁构件抗弯刚度的建议公式,最终建立了适用于SRHSC梁的正截面抗弯、斜截面抗剪承载能力计算模型与计算公式。(2)基于16榀SRHSC框架柱的抗震性能试验,观察了诸试件的裂缝开展模式及破坏形态,对典型破坏形态进行了机理分析,得到了评价框架柱抗震性能的诸项指标,探讨了影响柱抗震性能的主要因素,揭示了混凝土强度、剪跨比、轴压比及体积配箍率对SRHSC柱抗震性能(材料应变分布、恢复力特性、变形能力及滞回耗能能力)的影响规律。(3)权衡计算精度与计算成本后,论文分别提出了基于ABAQUS软件平台的构件尺度数值建模理论和基于OpenSees软件平台的结构尺度数值建模理论,内容涉及材料本构模型及单元的选取、内嵌型钢与混凝土间粘结滑移在数值建模中的实现、添加新材料和新单元子类的技术手段、建模理论的可靠性验证,等。(4)基于梁、柱及楼层典型力学性能指标建立各自震害指数计算模型,分别利用试验方法和数值方法对构件、楼层尺度主要设计参数进行损伤敏感性分析,揭示了损伤在梁、柱构件与楼层间的迁移规律,并探究了框架梁等效翼缘宽度、框架柱轴压比等性能参数对楼层损伤的影响,最终建立了循环荷载作用下SRHSC框架结构楼层损伤模型。(5)根据给出的框架梁和框架柱端部屈服转角及极限转角和楼层尺度层间最大位移角的计算公式,明确了SRHSC框架结构损伤模式的判定准则,并基于结构第一自振周期和结构顶点最大位移的变化以量化建筑结构损伤,揭示了地震动强度、地震波属性及结构高宽比对整体结构抗震性能的影响规律,在充分考虑损伤楼层位置、数量及损伤程度对整体结构力学性能的影响后,提出楼层“损伤权值系数”的确定方法,最终建立适用于SRHSC框架结构整体结构的地震损伤模型。(6)基于提出的不同设防烈度下场地指定烈度超越概率计算公式,给出了不同设防烈度下建设场地的地震危险性曲线,建立了最大层间位移角与结构输入地震动强度间的回归公式,揭示了输入地震动强度对不同设防烈度下SRHSC框架结构最大层间位移角的影响规律,得到了不同设防烈度下建筑结构遭受各级破坏的失效概率,分别从直接经济损失、间接经济损失和人员伤亡损失等方面完成单体建筑地震灾害损失评估,最终实现了型钢高强混凝土框架结构单体建筑震害损失期望分析。

【Abstract】 Taking the advantages of high rigidity, high bearing capacity and superior seismicperformance into consideration, SRC composite structures would be the first choice to beapplied to the high-rise, long-span, heavy-load and towering structures in high intensitysecurity areas. Using of high-strength concrete in SRC composite structures which makestwo materials a better team work meets the development trend of structures in the verticaldirection and the horizontal direction, and then the excellent structural performance andgood economic benefits will be facilitated. However, with the limitation andnon-applicability of original theories and the fact that the global giant earthquakes occurfrequently, it is necessary to evaluate the multi-scale mechanical properties and analyzethe loss expectation of earthquake damage of SRHSC frame structure.Numerical simulation combines with physical model test and theoretical analysisare adopted to study the multi-scale mechanical performances and earthquake damageloss expectation of SRHSC frame structure. The key mechanical problems in thecomponent scale and seismic damage evolution laws in various scales are discussed inthis paper, then the damage model in macroscopic scale are established and earthquakedamage loss expectation of individual buildings are achieved finally. The main researchworks and conclusions are shown as follows:1. Based on mechanical behavior experiment of19steel reinforced high-strengthconcrete (SRHSC) beams, the crack development mode and failure mode are observed,and main factors which affect the mechanical behavior of SRHSC beam are revealed,then the relationships between concrete strength, steel ratio, shear span ratio, loadingmode, shear connection mode and flange width ratio (ratio of steel flange width andbeam width) are obtained. Methods for calculating the shear force of interface betweensteel and concrete under different shear connection modes are proposed, and theformulas for calculating beams bending stiffness in the short-term load effect are putforward. The calculting model and formulas applied for SRHSC beam bearing capacityof the flexural strength and the shear strength are established finally.2. Based on seismic performance experiment of16SRHSC columns, the crack development mode and failure mode are observed, and mechanism of the typical failuremodes is analyzed in this paper. Main factors which affect the seismic performance ofSRHSC column are studied, and then the influence laws of concrete strength, shear spanratio, axial compression ratio and the volumetric stirrup ratio on column seismicperformance (such as material strain distribution, the restoring force characteristics, thedeformation capacity and the hysteretic energy capacity) are revealed.3. Taking the calculation accuracy and the calculation cost into consideration, thenumerical modeling theorys for component scale with ABAQUS program and forstructure scale with OpenSees program are put forward respectively. The ralatedresearch works contain the selection of the material constitutive model and units, therealization of the bond-slip between the embedded steel and concrete in the numericalmodeling, the technical means of adding new materials and new unit types, thereliability verification of the modeling theory and so on.4. Seismic damage calculating models for component and storey are established byusing the typical mechanical performance indexs, and the damage sensitivity analysesfor main factors of component and storey are conducted by numerical simulation andexperimental research, then the damage evolution laws between closely scales arerevealed and the influence of beam equivalent flange width, column axial compressionratio and other performance parameters on storey damage are explored. The storeydamage model of SRHSC frame structure under cyclic loads is established ultimately.5. According to calculating formulas for column yield rotation and ultimate rotation,and taking the calculating method for interlayer maximum displacement angle intoaccount, the judging criterion for SRHSC frame structure damage model is built. Thedamage evaluation function which regards natural period frequency rate and maximumdisplacement on the top of the structure as characteristic variable is establishedrespectively, and the prescribed damage method is adopted to reveal the influence lawsof ground motion intensity, seismic wave attributes and structure height width ratio onwhole structure damage. Taking full consideration of influence of location, quantity andinjury degree of the damage storey on structure mechanical properties, method fordetermining the floor damage weights coefficient is proposed, and the seismic damagemodel for SRHSC structure is finally established.6. The recommended formulas for calculating the exceeding probability ofspecified intensity under different fortification intensities are proposed and the seismichazard curves of construction sites under different fortification intensities are presented,then the regression formula reflecting the relationship between interlayer maximumdisplacement angle and inputting ground motion intensity is established. Influence lawsof inputting ground motion intensity on the maximum interlayer displacement angle of SRHSC frame structure under different fortification intensities is revealed, and thefailure probabilities of structures with specified fortification intensities which subjectedto different damage degree is obtained. Taking the direct economic loss, indirecteconomic loss and the casualty loss into consideration, the earthquake damage loss ofthe individual buildings is fulfilled. The earthquake damage loss expectation of theindividual SRHSC frame structure achieved finally.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络