节点文献

含型钢边缘构件高层混合连肢墙结构的抗震性能及设计方法研究

Experimental Study on Seismic Behavior and Design Criterion of Hybird Coupled Wall System with Steel Boundary Elements

【作者】 石韵

【导师】 苏明周;

【作者基本信息】 西安建筑科技大学 , 结构工程, 2013, 博士

【摘要】 混合连肢墙结构是采用钢连梁代替混凝土连梁的一种新型结构体系,它结合了钢梁塑性变形能力强、混凝土剪力墙抗侧刚度大的优点,相比于传统的钢筋混凝土连肢墙具有更优良的耗能能力,更加适用于高抗震设防烈度地区,美国已制定相关规范并应用于实际工程。但国内对这种体系的研究目前尚停留在节点承载力及破坏形式的研究方面,针对混合连肢墙体系在地震作用下的整体性能研究资料很少。本课题组采用在剪力墙边缘设置型钢暗柱的方法将钢连梁与剪力墙连接,在上述研究基础上提出了含型钢边缘构件混合连肢墙体系的概念,通过试验和理论两方面研究该新型体系在循环荷载作用下的破坏机理,提出抗震设计对策和方法。已有研究表明,耦连比是反映连肢剪力墙整体工作性能的一个重要参数,为研究耦连比对含型钢边缘构件混合连肢墙结构滞回性能的影响,进行了两个耦连比分别为30%和45%的5层含型钢边缘构件混合连肢墙结构1/3缩尺模型拟静力试验。基于试验结果,从结构的承载能力、刚度退化、位移延性、耗能能力及破坏模式等方面评价了结构抗震性能。研究表明:该结构体系通过钢连梁的剪切变形和墙肢底部的塑性铰变形来耗散能量,能够明显改善钢筋混凝土双肢剪力墙的抗震性能。耦连比为30%时,墙肢混凝土裂缝较为集中,破坏主要出现在底部两层;耦连比为45%的混合连肢墙体系在一定程度上降低了墙肢底部弯矩,钢梁的变形能力较强,各层连梁成为沿墙体全高设置的一种耗能构件,扩大了能量耗散的范围,是一种典型的多重抗震设防体系,满足抗震设计中对于延性的要求,得到的滞回曲线为稳定的梭形。基于含型钢边缘构件混合连肢墙结构试验结果,采用大型有限元程序ABAQUS对该结构体系进行了循环加载分析,引入Python源程序编制了给定荷载模式下基于位移控制的加载程序。在对有限元分析结果和试验结果进行对比验证后,本文对5个系列14个结构模型进行了参数分析,主要研究了耦连比、墙肢宽厚比、楼层总高度、钢连梁的破坏形式和型钢暗柱的设置等参数对结构体系滞回性能、破坏形式和内力分布规律的影响。根据试验和有限元结果详细分析了新型混合连肢墙体系的受力机理,建立了混合连肢墙体系的极限承载力力学模型,将混合连肢墙的破坏过程分为墙肢初裂、钢连梁屈服、剪力墙破坏三个阶段。在普通剪力墙破坏形式基础上考虑了型钢暗柱的影响,分别给出了连梁两种破坏形式和剪力墙五种破坏形式下结构的极限承载力计算公式。有限元分析结果与公式计算结果对比表明两者吻合较好,可以用来计算结构的极限承载力。最后依据理论分析结果,结合我国规范提出了含型钢边缘构件混合连肢墙结构的设计承载力计算方法和抗震设计建议。

【Abstract】 Hybrid coupled wall system is a new structural system with steel coupling beaminstead of concrete coupling beam. It combines the advantages of both good plasticdeformability of steel beam and large lateral rigidity of concrete shear wall. Comparedwith the traditional reinforced concrete coupled wall, this new kind of system has betterenergy dissipation capacity, so it is more applicable in high seismic intensity area. Thestandard of this structure has been developed in US, and the structure was applied topractical engineering. But the domestic study on this new system still remains on thebearing capacity of joint and its failure mechanism, the research data of hybrid coupledwall system under seismic performance is very rare. Based on this kind of new structuresystem, the research group has put forward the concept of hybrid coupled wall systemwith steel boundary elements with arranging the steel column at the edge of wall, andcarried out the experimental and theoretical study on the seismic behavior of thissystem.Previous studies have shown that CR is an important parameter and a reflection ofshear wall integral working performance. In order to study the effect of coupling ratio(CR) on hysteretic behavior of innovative hybrid coupled wall systems with shape steelboundary elements, two1/3scale5storey model with CR=30%and CR=45%have beentested under cyclic loading. Based on the test results, the seismic behavior is evaluatedin terms of bearing capacity, rigidity degeneration, ductility, energy dissipation, and thefailure mode. Test result reveals that the new system dissipates energy by sheardeformation of steel beams and plastic hinge deformation at the bottom of wall, so theseismic behavior of shear walls can be significantly improved. When CR is equal to30%, the cracks in the concrete wall concentrated mainly in the bottom two storeys. When CR is equal to45%, the moment at the bottom of the wall has been reduced to alarge extent, and the steel beam has good deformability. Coupling beams at each layerbecome energy dissipating member setting along the full height of the wall andexpanding the scope of the energy dissipation, the hysteretic curve appears typicalstable "shuttle" form, and the structure is a multiple seismic system, satisfied thedemand of seismic ductility design.Based on the experimental results of hybrid coupled wall system with steelboundary elements, nonlinear finite element analysis was performed to simulate theoverall process under cyclic loading with FEM program ABAQUS. By adopting Pythonlanguage, a displacement-controlled loading program is put forward with the givenlateral force pattern. More than14examples of5series are analyzed after verification ofFEM. The major factors include CR, dimensions of wall, failure mode of steel beam,and the steel column settings and so on.According to the testing and FEM analysis results, the bearing mechanism ofstructure is analyzed, and a hybrid coupled wall system mechanical model of ultimatebearing capacity is suggested. The damage process include three stages: wall crack,steel coupling beams yielding, and shear wall failure. Based on the failure mode ofshear wall considering the effect of concealed column, the calculation formula of theultimate bearing capacity is derived under two kinds of failure form of coupling beamsand five kinds of failure form of shear wall, respectively. The test results and thecalculation results are in good agreement, it can be used to estimate the ultimate load ofstructure. Suggestions for seismic design based on the theoretical analysis and ChineseCode are presented at last.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络