节点文献

磁通切换型电机拓扑结构及运行特性的分析与研究

Research on Topologies and Operational Characteristics of Flux-switching Machines

【作者】 王宇

【导师】 邓智泉;

【作者基本信息】 南京航空航天大学 , 电机与电器, 2012, 博士

【摘要】 永磁磁通切换电机(FSPM)继承了开关磁阻电机转子结构简单坚固和永磁同步电机(转子永磁式电机)转矩密度高、效率高的优点。永磁体放置在定子上,不受离心力,散热条件良好;电枢磁场和永磁磁场为并联关系,永磁体退磁风险小;电励磁和混合励磁拓扑易于实现无刷化。一系列优点决定了其在航空航天、风力发电、电动汽车领域具有较大的应用潜力。本文致力于磁通切换型电机的拓扑结构和控制策略的研究,在分析了12/10永磁磁通切换电机电磁性能的基础上,对电机的容错拓扑、电励磁拓扑、混合励磁拓扑、电动及发电控制策略进行了深入的研究。针对航空电力作动系统,从提高电枢磁场磁路的磁导入手,提出6/19转子分段式多齿容错FSPM电机拓扑。与传统容错型FSPM电机拓扑相比,所研究拓扑优点如下:(1)具有相对较高的转矩密度和较小的定位力矩;(2)定转子采用多齿结构,增大了电机自感,提高了抑制短路电流能力;(3)特定的轴向分段结构可以实现单个线圈反电势的高正弦度,并保证较高的反电势基波幅值。为了减小电机故障运行时的转矩脉动,研究了基于电流矢量重构技术的FSPM电机容错控制算法。对FSPM电机的电励磁拓扑结构进行了研究和衍化:(1)12/10电励磁磁通切换(EEFS)电机相对于12/8电励磁双凸极(EEDS)电机具有高正弦度的励磁磁链和相对较高的转矩密度。(2)衍化得到的“E”型铁芯EEFS电机、“C”型铁芯EEFS电机、多齿EEFS电机相对于12/10EEFS电机具有更高的转矩密度以及较强的恒功率区域运行能力。此外,详细分析了EEFS发电机和EEDS发电机在采用不同整流电路时的外特性。针对发电场合和宽转速范围驱动场合,研究了一种转子分段式混合励磁磁通切换电机拓扑,与串联式混合励磁磁通切换电机、磁桥式混合励磁磁通切换电机、“E”型铁芯混合励磁磁通切换电机等相比,所提出拓扑优点如下:(1)解决了二维混合励磁拓扑中永磁磁场与电励磁磁场的耦合问题;(2)不存在永磁体的退磁和短路,具有较高的永磁体利用率和励磁电流利用率。因此,转子分段式混合励磁磁通切换电机适合应用在高可靠性(无永磁体退磁)、高转矩密度(无永磁体短路)、调磁能力强(电励磁磁场磁路磁阻小)的场合。为同时提高发电系统的动、静态性能,提出了混合励磁磁通切换发电机的直接功率线性控制(DPLC)策略。DPLC不但与经典的直接功率控制(DPC)具有相同的转矩跟踪能力,而且在稳态时,定子磁链纹波和电磁转矩脉动得到有效地抑制。从系统成本、可靠性、功率因数、电机利用率分析了直接功率线性控制策略、直接功率控制策略、矢量控制策略、调磁调压控制策略的优缺点,对各种策略具有优势的使用场合进行了分析。将DPLC的控制思想移植到交流电机的电动控制领域,提出了交流电机的直接转矩线性(DTLC)控制策略,给出同步类交流电机和异步电机的DTLC控制框图和目标定子磁链计算方法。在DPLC和DTLC算法中,为准确辨识到电机的定子磁链信息,提出了基于高通滤波器、低通滤波器以及坐标变换环节的磁链辨识算法,该算法可将反电势中的直流分量有效滤除,其幅频特性、相频特性与纯积分算法相同,不受负载、电机转速以及闭环参数的影响。克服了纯积分算法和一阶低通滤波器存在的饱和和相位误差问题。

【Abstract】 The flux-switching permanent-magnet (FSPM) machine inherits the simple and robust rotor of theswitched reluctance machine (SRM) and high torque density and efficiency of the permanent magnetsynchronous machine (rotor-PM machine). As the magnets are on the stator, the temperature rise ofthe magnets may be more easily managed; moreover, the brushless hybrid excitation structure may bemore easily achieved. Furthermore, the armature field is in parallel with the PM field and there is norisk of PM demagnetization. Therefore, FSPM machines exhibit the potential in applications includingaerospace engineering, wind power systems and hybrid electric vehicles.This dissertation focuses on basic research of topologies and operational characteristics of theFSPM machines with emphasize on fault tolerant, electrical excitation and hybrid excitationtopologies and control strategies for both generator and motor operations, moreover, experiments arecarried out and analyzed.For the electro-mechanical actuator (EMA) in aircraft subsystems, a6/19multi-tooth fault-tolerantFSPM machine with twisted-rotor (MTFTFSPM-TR) is presented. Compared with the traditionalfault-tolerant FSPM machines, the MTFTFSPM-TR shows higher torque density, better capability ofinhibition short-circuit current and lower cogging torque. Meanwhile, the twisted-rotor structure canachieve a symmetric and high sinusoidal back-EMF in each armature coil without the magnitudereduction. Besides, the fault tolerant control methods are investigated to reduce the torque rippleswhen in fault operation, which has been verified on MTFTFSPM-TR machines.For low cost applications, the electrical excitation topologies of FSPM machines are analyzed:(1)compared with the12/8EEDS machine, the12/10EEFS machine shows bipolar excitation flux andrelatively higher torque density.(2) Compared with the12/10EEFS machine, the “E” core EEFSmachine, the “C” core EEFS machine and the multi-tooth EEFS machine shows higher torque density.Meanwhile, the “E” core EEFS machine, the “C” core EEFS machine and the multi-tooth EEFSmachine show wide constant-power capability even with constant excitation current. Besides,theexternal characteristics of the EEFS and the EEDS generators are compared based on differentrectifiers.For generation application field, a twisted-rotor parallel hybrid excitation flux-switching machine isproposed. Compared with the series hybrid excitation topology, the series hybrid excitation topologywith iron flux bridge and the parallel hybrid excitation topology with E core structure, the proposedtopology shows the following advantages:(1) the coupling problem of PM field and electrical excitation field can be solved.(2) high excitation current and high magnets utilization can be achievedsimultaneously. It can be found that the twisted-rotor parallel hybrid excitation flux-switchingmachine is suitable for applications that require high reliability (no PM demagnetization), high torquedensity (no PM magnetic short circuit), and high flux adjustment capability (small reluctance inelectrical field circuit).For the hybrid excitation flux-switching generator, a direct power linear control (DPLC) isproposed. This strategy shows similar excellent dynamic performance as that of the traditional directpower control (DPC), and further, it can reduce the ripples in stator flux-linkage and electromagnetictorque, which enhance the system steady performance. In terms of system cost, reliability, powerfactor and machine utilization, the DPLC, DPC, vector control (VC) and excitation current regulationstrategies are compared and their suitable applications are analyzed.Moreover, the direct torque linear control (DTLC) can also be employed for the motor operation. Inthe DTLC under motor operation, the abilities to control the torque angle by the motion vector and themaximum space vector, respectively, are compared. The DTLC and direct torque control (DTC) showabilities to control torque, which is verified. The concept of DTLC can also be extended to otherapplications using AC machines, which has been verified on FSPM machines.However, both DPLC and DTLC need accurate stator flux-liakage. Hence, a new integrationalgorithm, which can not only overcome the problems the pure integrator and LP filter produced butalso effectively solve the problems that estimation accuracy may be affected by closed-loop parameterin the closed-loop algorithms and adaptive filter algorithms, is proposed. This method has sameamplitude-frequency and phase-frequency characteristics as those of the pure integrator. Meanwhile,its dc gain is zero and the operation will not be affected by machine load and speed as well asclosed-loop parameters. The performance is verified by experiments.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络