节点文献

低维(氢)氧化镍/碳杂化纳米材料的可控制备及其在葡萄糖传感器中的应用研究

Controlled Synthesis of Low-Dimensional(Hydro)oxide Nickel/Carbon Hybrid Nanomaterials and Their Applications for Glucose Sensing

【作者】 杨端光

【导师】 黎华明;

【作者基本信息】 湘潭大学 , 高分子化学与物理, 2013, 博士

【摘要】 近年来,杂化纳米材料因其独特的形态和结构而呈现出诸多奇异的物理、化学性质,在催化、生物、医学以及光电磁等领域具有广阔的应用前景。研究表明,杂化纳米材料可实现各纳米材料间优势互补,从而研制出性能优异的新型功能材料,因此探索杂化纳米材料的可控制备具有重要的理论及实际意义。本论文重点研究低维石墨烯/Ni(OH)2及NiO/C杂化纳米材料的可控制备及其在葡萄糖传感器中的应用,探讨杂化纳米材料形态结构与其电化学性质之间的关系。石墨烯/Ni(OH)2杂化纳米材料的制备及其电化学应用。先分别合成含叠氮端基的聚乙烯基吡咯烷酮(PVP-N3)和炔基修饰的氧化石墨烯,而后通过两者之间的click反应,将PVP键接到氧化石墨烯表面;随后以NiCl2为镍源,氧化石墨烯表面接枝的PVP为模板和成核中心,在碱性条件下制备氧化石墨烯/Ni(OH)2复合物,并经化学还原制得石墨烯/Ni(OH)2杂化纳米材料。在此基础上,用所制得的石墨烯/Ni(OH)2杂化纳米材料修饰玻碳电极,构筑无酶葡萄糖传感器,用于葡萄糖检测,显示出较高的灵敏度和较宽的线性响应,其线性响应浓度范围和检测限分别为0.3–750μM和30nM(S/N=3)。核壳结构Ni(SO40.3(OH)1.4/C杂化纳米带合成研究。先以硫酸镍和乙酸钠为原料,经水热法合成Ni(SO40.3(OH)1.4纳米带,研究发现SO42–离子在反应体系中起结构导向作用并诱使晶体各向异性生长,在[Ni2+]=0.025M,[Ni2+]/[OAc]=1/4,反应温度和时间分别为180oC和48h的最佳条件下,成功合成出超长纳米带。随后以葡萄糖为碳源,采用水热碳化法对所合成的Ni(SO40.3(OH)1.4纳米带前驱体进行碳包覆,成功制备出具有核壳结构的Ni(SO40.3(OH)1.4/C杂化纳米带。系统研究了葡萄糖浓度对核壳结构纳米带碳层厚度的调控情况,实验结果表明,当葡萄糖浓度在1.125–6.750g/L范围变化时, Ni(SO40.3(OH)1.4/C杂化纳米带的碳层厚度可由2nm渐增至18nm,葡萄糖浓度与碳层厚度几乎呈线性增长关系。此外,采用XRD、SEM、TEM、XPS和FTIR等现代分析测试技术分别对Ni(SO40.3(OH)1.4纳米带水热碳包覆前后进行了研究。核壳结构NiO/C杂化纳米带合成及其葡萄糖传感作用。以前面合成的具有核壳结构的Ni(SO40.3(OH)1.4/C杂化纳米带为原料,经热处理制备同样具有核壳结构的NiO/C杂化纳米带。系统考察了热处理温度对NiO结构和性能的影响,先采用FTIR及XRD研究纯Ni(SO40.3(OH)1.4纳米带在热处理条件下的结构转变情况,而后采用SEM、循环伏安法及计时安培法研究纯NiO及核壳NiO/C杂化纳米带的形态及电化学性能。在此基础上,分别用所合成的NiO及NiO/C杂化纳米带构筑葡萄糖无酶传感器,并用于葡萄糖检测。系统研究了葡萄糖检测条件,在最佳测试条件下,NiO无酶传感器的葡萄糖氧化峰电流与其浓度在1–170μM范围内呈良好的线性关系,检测限为210nM。而NiO/C无酶葡萄糖传感器的线性范围为0.5–180μM,检测限为25.5nM。将NiO/C无酶传感器应用于血样中葡萄糖测定,其回收率在92.9–98.7%之间。

【Abstract】 In recent years, hybrid nanomaterials have found prosperous applications in diversefields, such as catalysis, biology, iatrology, and photoelectromagnetic devices becauseof their peculiar morphologies and structures together with their fascinating physicaland chemical properties. Considering the fact that the synergistic effect has existed inhybrid nanomaterials as demonstrated by previous researches, it is therefore possible todevelop novel functional materials by integrating multicomponent nanoscale entitiesinto hybrid system. In this work, we focused our research on the synthesis of graphene/Ni(OH)2and NiO/C nanomaterials with low-dimension and their application in glucosesensing. Additionally, the relationships between electrochemical properties and themorphology and structure of the resultant hybrid materials were also discussed.Synthesis and electrochemical performance of graphene/Ni(OH)2hybrid nanomaterials.In this chapter, we demonstrated a facile method for the preparation of graphene/Ni(OH)2hybrid nanomaterials. Firstly, azide-terminated poly(vinylpyrrolidone)(PVP-N3) and alkyne functionalized graphene oxide (AGO) were separately prepared. Thenpolymer functionalized graphene oxide (PGO) was prepared by Cu(I) catalyzed clickcoupling of AGO with PVP-N3. Subsequently, Ni(OH)2nanoparticles were depositedonto graphene nanosheets using PGO as a template. Upon reduction with sodiumborohydride, graphene/Ni(OH)2hybrid nanostructure was constructed. The as-preparedgraphene/Ni(OH)2hybrid nanosheets were directly immobilized onto the surface ofglassy carbon electrode for glucose determination. This nonenzymatic glucose sensorexhibited a wider linearity range from0.3to750μM with a detection limit of30nM(S/N=3).Synthesis of Ni(SO40.3(OH)1.4/C core‐shell nanobelts. Ni(SO40.3(OH)1.4nanobelts havebeen synthesized via a simple template-free hydrothermal reaction in an aqueoussolution containing nickel sulfate and sodium acetate. It is found that the sulfate ions can play a capping agent role in crystal growth and result in anisotropic crystal growthin the dissolution-crystallization process. Under optimized conditions ([Ni2+]=25mM,[Ni2+]/[Ac]=1/4,180oC,48h), Ni(SO40.3(OH)1.4nanobelts have been successfullysynthesized. Subsequently, core-shell Ni(SO40.3(OH)1.4/C composite nanobelts havebeen synthesized from the carbonization and polymerization of glucose under a mildhydrothermal condition in the presence of newly produced Ni(SO40.3(OH)1.4nanobelt.The shell thickness of the core-shell nanobelts can be varied from2to18nm byadjusting the concentration of glucose ranged from1.125–6.750g/L. In addition, XRD,SEM, TEM, XPS, and FTIR techniques were used to characterize the nanobelts beforeand after carbon deposition.Synthesis of NiO/C core‐shell nanobelts and their applications for glucose sensing. Thestructural evolution from core-shell Ni(SO40.3(OH)1.4/C to NiO/C has been performedvia ex situ heat treatment. The influences of heat treatment temperature on the structureand properties of resultant NiO have been systematically investigated. Firstly, thestructural evolution from Ni(SO40.3(OH)1.4to NiO has been studied by using FTIR andXRD spectroscopy. Subsequently, the morphology and electrochemical properties havebeen elevated by using SEM, cyclic voltammtery and chronoamperometry. Theas-prepared NiO and NiO/C composites were directly deposited onto the surface ofglassy carbon electrode (GCE) for nonenzymatic glucose determination. Underoptimized conditions, the as-fabricated NiO/GCE sensor exhibited a linearity rangefrom1to170μM glucose with a detection limit of210nM (S/N=3), while theNiO/C/GCE sensor exhibited a wider linearity range from0.5to180μM glucose witha detection limit of25.5nM (S/N=3). Additionally, the NiO/C/GCE sensor has beensuccessfully used for the assay of glucose in serum samples with good recovery,ranging from92.9%to98.7%.

  • 【网络出版投稿人】 湘潭大学
  • 【网络出版年期】2014年 03期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络