节点文献

液体环境下螺旋管道机器人的研究

Spiral Micro In-Pipe Robots in Liquid Environment

【作者】 梁亮

【导师】 彭辉;

【作者基本信息】 中南大学 , 控制科学与工程, 2012, 博士

【摘要】 随着内窥镜技术和微创手术的应用范围不断扩展,自主式微型管道机器人的研究已经成为学者们研究的热点。本文针对液体环境的工业管道和充满体液的人体内腔细小管道,提出基于液体环境的内外螺旋和内螺旋无损伤管道机器人,并对该机器人进行了理论分析和实验研究。该机器人有望应用于血管等充满液体的微细管道中实现检查、采样、疏通、定点投药等功能。论文首先指出了工业界和医学领域里传统管道检测方法的缺陷,以及管道机器人在工业界和微创外科手术等方面的重要研究意义,并进一步分析了被动式胶囊内窥镜、蠕动管道机器人、主动式胶囊机器人、泳动式机器人、螺旋式机器人以及超微机器人的发展现状和存在的问题,提出本论文的研究切入点和主要研究内容。论文提出了螺旋式机器人的两种结构设计方案,建立螺旋机器人运行时的管道内液体的动力学方程,运用计算流体力学方法求解其液体流场,获得螺旋机器人的环境特征与运行参数(液体密度、液体粘度、管道直径、偏心距、弯曲管道、外壳转速、内轴转速、内外表面转速和、机器人运行速度等)对机器人运行性能(包括机器人轴向推进力、管道壁所受最大压力、液体对机器人承载力等)的影响。对比研究了内外螺旋机器人、单节外螺旋机器人和双节外螺旋机器人的轴向推进力、管道壁所受最大压力、液体对机器人的承载力和所受的液体周向阻力矩与其外壳转速的关系。为了验证内外螺旋机器人在液体环境管道中运行的可行性,从机器人工作原理分析出发,设计了一套周转轮系模拟机器人运动时内外两个螺旋体的工作状况,进而对机器人系统进行结构设计,制作了一个内外螺旋机器人系统,进行了空载和管道内的运行实验,并分析了该实验结果。论文通过引入脉动血流函数作为血管进口条件,计算了在一个血流脉动周期内,内外螺旋机器人和内螺旋机器人在脉动血流作用下,机器人的轴向推进力、血管壁所受最大和最小压力,并且分析了不同运行速度对机器人轴向推进力和血管壁所受最大压力的影响。论文计算了自由状态下螺旋机器人的受力和管道壁所受压力,分析了自由状态下内螺旋机器人的内螺旋槽结构参数(槽口宽、槽底宽、倾角、螺旋槽槽深、螺纹升角和螺纹线数)对机器人能耗指标和内螺旋轴向推进力的影响,并运用正交试验优化设计方法,优化了内螺旋槽结构参数组合,得到一组最优的机器人内螺旋槽结构参数组合。类似地,分析了内外螺旋机器人外螺旋槽结构参数对机器人轴向推进力的影响,并运用正交试验优化设计方法,优化了外螺旋槽结构参数组合,得到一组最优的机器人外螺旋槽结构参数组合。论文最后对相关工作进行总结,概括了论文的特色和创新点,并对未来工作提出展望。

【Abstract】 With the expanding of applied range of endoscopic technology and minimal invasive surgery technology, studies on the autonomic micro in-pipe robots have been more and more important. In this paper, according to the liquid pipelines in the special industrial environments and the small inner pipelines of the human body filled with body fluid, no invasive inner and outer spiral micro in-pipe robots and inner spiral micro in-pipe robots based on liquid environments are proposed. The theoretical analysis and experimental study on the micro in-pipe robots are conducted. The micro-robot is probably used in the blood vessel, and it can realize of inspection, sampling, drug spot deliverance and other functions.The paper firstly puts forward the defects of traditional pipeline detection methods in the industry and the medical field, and depicts important research significance of the micro in-pipe robots in industry and minimally invasive surgery, and further analyzes the developments and existing problems of passive capsule endoscopes, peristaltic robots, active capsule robots, swimming robots, spiral robots and nanorobots. Finally, the research starting point and the main content of research are presented.The paper presents two structural design schemes of the spiral micro in-pipe robots, and the dynamic equations of the liquid in pipelines are established while spiral robots running, and then the flow field is solved by the computational fluid dynamics method. The influence of various parameters(liquid density, liquid viscosity, pipeline diameter, eccentricity, curved pipeline, outer spiral speed, inner spiral speed, inner and outer spiral speed sum and robotic running speed, etc.) on robotic motion performance(include axial thrust force, pressure of pipeline wall and load capacity of blood, etc.) is obtained. The relationship between the axial thrust force, pressure of pipeline wall, load capacity of blood and circumferential drag torque of inner and outer spiral micro robots, single sectional outer spiral robots and double sectional outer spiral robots and their outer shell rotating speed is compared. In order to verify the feasibility of inner and outer spiral micro robots in pipelines filled with liquid, from the analysis of the robotic working principle, a set of epicyclic gear train that simulates inner and outer spiral working status of the running robot is designed, and the structure of the robot system is designed, and the inner and outer spiral micro robotic system is made. The unloaded and in-pipe operation experiment of the inner and outer spiral robot are conducted, and the experimental result is analyzed.Through the introduction of pulsating blood flow function as the inlet condition, the robotic axial thrust force, maximal and minimal pressure of pipeline wall of the inner and outer spiral robot and the inner spiral robot are numerically calculated in a flow pulsation cycle under the pulsating flow effect, and the influence of the robotic various running speeding on the robotic axial thrust force and the maximal pressure of pipeline wall is analyzed.The spiral robotic axial thrust forces and pressures of pipeline wall in the free state are calculated. The influence of the inner spiral structure parameters(notch width, groove bottom width, dip angle, groove depth, spiral angle and thread number) of the inner spiral robot in the free state on the energy consumption index and the inner spiral axial thrust force is numerically analyzed. By the orthogonal optimization design method, the optimal combination of the six inner spiral structural parameters is obtained. Similarly, the influence of the outer spiral structure parameters of the inner and outer spiral robot on the robotic axial thrust force is numerically analyzed. By the orthogonal optimization design method, the optimal combination of the six outer spiral structural parameters is obtained.Finally, the paper summarizes all the studies and points out the innovations and discusses which studies should be made in future.

  • 【网络出版投稿人】 中南大学
  • 【网络出版年期】2014年 03期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络