节点文献

多酸/半导体复合膜的制备及其光电性能研究

Preparation and Photovoltaic Performance of Polyoxometalate/Semiconductor Composite Film

【作者】 孙志霞

【导师】 许林;

【作者基本信息】 东北师范大学 , 无机化学, 2013, 博士

【摘要】 为了解决能源危机问题,太阳能的开发和利用已经成为世界范围内的研究热点。其中,提高半导体材料的光电转换效率是一个重要的研究课题。多金属氧酸盐(多酸),是一种良好的电子接受体,能够捕获半导体材料中的光生电子,从而减小半导体中载流子的复合,以提高其光电转换效率。本文以多酸为修饰组分,制备了各种半导体/多酸复合膜材料,并考察了它们的光电转换性能。具体如下:1.利用交替沉积自组装技术将PW12和TiO2制备成纳米复合膜,并用紫外可见光谱、红外光谱和原子力显微镜表征。光电流测试表明,PW12/TiO2膜的光电流响应强度与膜的层数有关。另外,与单独TiO2膜相比,PW12/TiO2复合膜展示了更高的光电流响应和对甲醇的光电催化能力,并且PW12/TiO2膜的能量转换效率比单独TiO2膜的能量转换效率提高了50%。2.采用交替沉积自组装技术将P2W18和聚烯丙基胺盐酸盐修饰的CdS(CdS-PAH)制备成纳米复合膜。与单独的CdS-PAH膜相比,CdS-PAH/P2W18复合膜的光电流响应强度和能量转换效率都提高了约1.5倍。这表明,多酸扮演了一个有效的电子接受体,减小了CdS中光生电子-空穴对的复合,从而提高了CdS的光电性能。我们通过荧光和表面光电压测试进一步证明了这个机理。3.使用交替沉积自组装技术将SiMo12和CuPc制备成纳米复合膜。在全光和可见光的照射下,CuPc/SiMo12膜都展示了比单独CuPc膜更高的光电流响应。并且,与CuPc薄膜相比,SiMo12/CuPc复合膜的能量转换效率提高了约8.7倍。表面光电压测试表明,CuPc和SiMo12之间发生了有效的光生电荷转移。另外,CuPc/SiMo12复合膜对水合肼展示了很好的光电催化性能。4.制备了多酸(PW12、P2W18)/TiO2复合膜并组装成光电池。通过光电流、I-V曲线、电化学阻抗谱和开路光电压测试分析了不同的种类和含量的多酸/TiO2复合膜的光电性能、电子转移和复合性质。在TiO2中加入少量的多酸时(0.75%),显示了比单独TiO2膜更高的光电流响应,并且PW12(0.75%)/TiO2膜和P2W18(0.75%)/TiO2膜的能量转换效率分别是TiO2膜的2.6倍和1.6倍。电化学阻抗谱表明,多酸的引入降低了TiO2中载流子的复合,增加了载流子的转移,以至提高了TiO2的能量转换效率。而在TiO2膜中引入过量的多酸(7.5%),多酸则变成了电子陷阱填充位点,从而降低了光电性能。5.制备了以TiO2和PW12/TiO2为光阳极的染料敏化太阳能电池。与TiO2光阳极相比,0.75%-PW12/TiO2复合光阳极的能量转换效率提高了33%,而7.5%-PW12/TiO2光阳极的能量转换效率却降低了。这主要是因为:(1)0.75%-PW12/TiO2复合膜能够吸附更多的染料;(2)多酸的引入减小了光生载流子的复合,提高了载流子的转移。而7.5%-PW12/TiO2光阳极中,可能形成了电子陷阱填充位点,降低了光电性能。

【Abstract】 The utilization of solar energy has become a hotspot in the world to solve the shortage offossil energy. Among them, an important research topic is to improve light-to-electricityconversion efficiency of the semiconductor materials. Polyoxometalates (POMs) are a kind ofgood electron acceptors. They can transport photogenerated electrons in the semiconductors,which reduces the electron-hole recombination and then improves the photovoltaic response.In this paper, we prepared a series of semiconductors/POMs composite films and investigatedtheir photovoltaic performances.1. We fabricated the nanocomposite films of PW12and TiO2by the layer-by-layer (LbL)self-assembly method. These films were characterized by UV-vis spectroscopy, IR spectra,and atomic force microscopy. Photocurrent measurements suggested that the photocurrentresponse of the PW12/TiO2composite film was highly dependent on the deposited number oflayers. Furthermore, the PW12/TiO2composite film demonstrated the higher photocurrent andphotoelectrooxidation activity for methanol than the TiO2film, and the power conversionefficiency of the PW12/TiO2film was improved by50%.2. We prepared the composite thin films of P2W18andpoly(allylaminehydrochloride)-modified CdS (CdS-PAH) by the LbL self-assembly method.The CdS-PAH/P2W18composite film displayed a ca.1.5-fold increase in the photocurrentresponse and power conversion efficiency, as compared to the single CdS-PAH film. Thisindicated that P2W18could act as electron acceptors to efficiently suppress electron holerecombination in CdS and improve the photovoltaic performance. Such a mechanism wasfurther proven by experimental data of fluorescence emission spectra and surfacephotovoltage spectroscopy.3. A composite film containing CuPc and SiMo12was fabricated by the LbLself-assembly method. Under both solar light and visible light irradiation, the photocurrentresponse of the CuPc/SiMo12film was markedly enhanced in comparison with those of theCuPc/PSS film, and the CuPc/SiMo12film displayed a ca.8.7-fold increase in the powerconversion efficiency. Surface photovoltage measurements indicated that the photoinducedelectron transfer occurred between CuPc and POMs. Furthermore, the CuPc/POMs compositefilm exhibited good photoelectrocatalytic performance for the oxidation of hydrazine.4. We prepared the POMs(PW12、P2W18)/TiO2composite films and assembled the cells.We study on the photoelectrochemical performance, the electron transport and electron–holerecombination of the different content and type POMs in TiO2film by measurements ofelectrochemical impedance spectroscopy (EIS), photocurrent responses and I–V curves. ThePOMs/TiO2films at low POMs loadings (0.75%) displayed the enhanced photovoltaicperformance. The power conversion efficiency of PW12(0.75%)/TiO2film andP2W18(0.75%)/TiO2film was2.6times and1.6times that of TiO2film, respectively. EISmeasurements proved that introducing POMs into TiO2film could reduce electron-holerecombination and facilitate photogenerated electron transfer, which enhanced the light-to-electricity conversion efficiency. However, the excessive content (7.5%) of POMscould almost cause a negative effect on photovoltaic performance due to electron trap fillingsites.5. We fabricated the DSSCs based on both the only TiO2photoanode and the PW12/TiO2photoanode. Compared to the TiO2photoanode, the power conversion efficiency of0.75%-PW12/TiO2photoanode was improved by33%, while the7.5%-PW12/TiO2photoanodecould cause a negative effect on photovoltaic performance. The reasons were as follows:(1)the0.75%-PW12/TiO2film could adsord more dye;(2) The incorporating of PW12into TiO2photoanode could reduce electron-hole recombination and improve electron transfer. However,electron trap filling sites were present in the7.5%-PW12/TiO2photoanode.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络