节点文献

金属纳米粒子/介孔碳复合材料制备及电化学应用研究

Inorganic Nanaparticles/Mesoporous Carbon Composites: Preparation and Their Electrochemical Application

【作者】 薄祥洁

【导师】 郭黎平;

【作者基本信息】 东北师范大学 , 分析化学, 2013, 博士

【摘要】 介孔碳具有较大的比表面积和三维立体介孔结构,是一种新型催化剂载体。较大的比表面积能为无机纳米粒子生长提供较多的活性位点。介孔碳骨架上分布的介孔不仅有利于电极表面反应分子的扩散,还可以作为纳米尺度的反应场所去限制无机纳米粒子的生长,提高纳米粒子的分散性。与宏观材料相比较,无机纳米粒子由于体积效应,表现出很多催化性质。介孔碳和纳米粒子分别具有很多优异的特性,将两种材料结合起来可以得到很好的电化学性质。本文文献综述介绍了介孔碳材料的分类、制备及其功能化材料。重点介绍了有序介孔碳在修饰电极和电催化中的应用并对有序介孔碳负载的贵金属催化剂在电化学应用做了详细的介绍。本论文以介孔碳为载体,充分利用介孔碳的特点制备介孔碳负载的金属纳米粒子复合物。以甲醇、过氧化氢、葡萄糖和肼为探针,研究了金属纳米粒子/介孔碳复合材料的电化学性质。本论文包括以下几个部分:(1)以原位生长法在有序介孔碳孔道内制备硫化亚铜纳米粒。有序介孔碳较大的比表面积和丰富的介孔有利于得到高分散的硫化亚铜纳米粒子。硫化亚铜/有序介孔碳复合物基本保持了有序介孔碳的二维有序结构。两种材料各自的优异性能赋予硫化亚铜/有序介孔碳复合物很好的电化学性质,该复合材料对过氧化氢还原有很好的电催化活性。与有序介孔碳相比较,复合材料表现出较大的电流和较低的过电位。基于复合材料的无酶过氧化氢传感器表现出较高的灵敏度和选择性。(2)采用洋葱型碳微囊作为催化剂载体负载PtPd合金纳米粒子。洋葱型介孔碳微囊具有多层空心结构并且层壁上分布着大量介孔,这种特殊的多层多孔结构不仅有利于金属纳米粒子的沉积,还为反应物质的扩散提供了很大的便利。粒径约为4.5nm的PtPd纳米粒子很好的分散在碳微囊的表面和层中。该复合材料对葡萄糖有很好的直接氧化活性。通过优化Pt和Pd的比例发现Pt:Pd质量比为1:1时电化学响应信号最大。由复合材料得到的无酶葡萄糖传感器显示出很好的选择性和较快的响应时间(<3s)。(3)离子液体是一种常用的制备碳材料的前驱体,但是普通的离子液体由于具有流动性,作为碳源时所制备的碳材料很难保持固定的形貌。采用可聚合的离子液体和单分散的st ber硅球为前驱体和模板制备了具有空心结构的碳球。可聚合的离子液体形成聚合物包裹硅球表面形成核壳结构,经碳化和除去硅模板可以得到空心状的碳球。用甲酸作为还原剂,室温下将Pt纳米粒子负载在空心碳球的表面。与商业的催化剂载体相比较,空心碳负载的Pt催化剂不仅表现出较大的电活性面积,而且能很好催化甲醇的电化学氧化。Pt纳米粒子负载在空心碳上有着较高的抗污染能力。(4)通常制备有序介孔碳表面只含有少量的羧基,不能为金属纳米粒子的生长提供足够的活性位点。用原位聚合离子液体单体的方法修饰有序介孔碳的孔结构和表面,有序介孔碳表面的聚离子液体能提供丰富的吸附金属离子的结合点。通过带负电荷Pt前驱体和聚离子液体带正电荷的官能团之间的自组装的作用,在聚离子液体/有序介孔碳复合物载体上得到了精细Pt纳米粒子。复合材料结合了Pt、有序介孔碳和离子液体的性质可以作为一种新的电极材料用于电化学检测。与未修饰聚离子液体的Pt/有序介孔碳比较,Pt/聚离子液体/有序介孔碳对探针分子表现出了很好的催化活性。(5)模板法是一种常用的制备介孔碳的方法。常用模板法有硬模板法(SBA-15和MCM-41等有序介孔硅作为硬模板)和软模板法(嵌段共聚物P123和F127作为软模板)。模板法制备介孔碳步骤繁琐,合成周期较长,而且还需要额外的步骤去制备模板和除去模板。我们发展了一种快速制备介孔碳的方法,丁二酮肟和镍离子在室温下快速反应生成四边形的纳米棒,在氮气氛围下500℃碳化得到的四边形Ni(NiO)/C纳米棒然后除去Ni(NiO)后得到四边形的介孔碳纳米棒。氮气吸附和透射电镜显示四边形纳米棒表面和骨架内含有丰富的介孔。大量的互相连接的介孔不仅有利于物质的扩散,还有利于金属纳米粒子的沉积。Pt纳米粒子能很好分散在四边形的介孔碳纳米棒上。所制备的复合催化剂和商业的Pt/C相比较,具有较高的电化学活性。

【Abstract】 Mesoporous carbon materials possess3D porous structure and high surface area, andattract much attention for their application as catalyst support in electrochemistry. The highsurface area of mesoporous carbon is favorable for the exposure of active sites for thedeposition of inorganic nanoparticles. The mesoporous structure provides a more favorablepath for electrolyte penetration and transportation, while the high surface area and the largenumber of mesopores of the mesoporous carbon allow for the obtainment of high metaldispersion. The mesopores also serve as barriers to suppress agglomeration of particles andcan be used as confined space for the growth of nanoparticles. Compared with the bulkmaterials, nanoscale particles exhibit many different properties due to the volume effect. Themesoporous carbon and nanoparticles exhibit different physical and chemical properties,which can compensate each other. Therefore, the combination of porous carbon andnanoparticles into hierarchical structure is a promising method to integrate theirdistinguishing properties together.In the introduction, the methods for synthesis of mesoporous carbon and commonmethods for the functionalization of nanoporous carbons were summarized. The applicationof mesoporous carbon in electrocatalysis and catalyst support was emphasized especially. Theintroduction of noble metal nanoparticles further extends the application of mesoporouscarbon and provides new features such as catalytic and electrochemical activity. Many novelmethodologies used to introduce Pt nanoparticles on mesoporous carbon were discussed in theintroduction. In this dissertation, mesoporous carbons were used as catalysts support fordeposition of inorganic nanoparticles. Glucose, hydroperoxide, hydrazine, and methanol wereselected as marked molecules to evaluate the electrochemical activity of inorganicnanoparticles/mesoporous carbon composites. This dissertation mainly consists of thefollowing several aspects:(1) A simple and facile synthetic method to incorporate cupper sulfide (Cu2S)nanoparticles inside the mesopores of ordered mesoporous carbons (OMCs) is reported. TheCu2S/OMCs nanocomposite was characterized by transmission electron microscopy (TEM),X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and nitrogenadsorption-desorption. The results show that the incorporation of Cu2S nanoparticles insidethe pores of OMCs does not change the highly ordered two-dimensional hexagonalmesostructure of OMCs matrix. Nonenzymatic amperometric sensor of hydrogen peroxidebased on the Cu2S/OMCs nanocomposite modified glassy carbon (GC) electrode is developed. Compared with the pristine OMCs modified electrode, the Cu2S/OMCs modified electrodedisplays high electrocatalytic activity towards hydrogen peroxide and gives linear range from1to3030μM (R=0.9986). The sensor also exhibits good ability of anti-interference toelectroactive molecules. The combination the unique properties of Cu2S nanoparticles and theordered mesostructure of OMCs matrix guarantee the excellent electrocatalysis for hydrogenperoxide. The good analytical performance and low cost make Cu2S/OMC nanocompositepromising for the development of effective sensor for hydrogen peroxide.(2) A facile and fast microwave irradiation method was developed to prepare PtPdbimetallic alloy nanoparticles on onion-like mesoporous carbon vesicle (MCV). With MCVact as a template, its high surface area favors the formation of nanosized PtPd particles. ThePtPd/MCV nanocomposite was characterized by transmission TEM, scanning electronmicrographs (SEM), XRD, and XPS. A nonenzymatic amperometric sensor of glucose basedon the PtPd/MCV modified GC electrode is developed. Compared with the Pt/MCVnanocomposite, the PtPd/MCV modified electrode displays enhanced current responsetowards glucose and gives linear range from1.5to12mM. The particular lamellar structureof the MCV results in favorable transport passage for glucose. The modified electrodeachieves95%of the steady-current within3s. This nonenzymatic glucose sensor also exhibitsgood ability of anti-interference to electroactive molecules. The fast response and facilepreparation method make PtPd/MCV nanocomposite promising for the development ofenzyme-free sensor for glucose.(3) Hollow carbon spheres (HCSs) are prepared using poly(ionic liquid)(PIL) as acarbon precursor and monodisperse silica particles as a template for the first time. ThePILs can be used to overcome the fluidity of IL. The IL form a uniform polymer coatingon the template surface after polymerization. Carbonization of the coating and thesubsequent removal of the template produces porous carbon spheres with a hollowstructure. The HCSs possess a high surface area, good conductivity, and porosity suitablefor mass transport, and they can be used as a support for Pt electrocatalysts. Ptnanoparticles with an average size of2.8nm are homogeneously distributed onto theHCSs. The high surface area and unique structure facilitates the fine dispersion of Ptnanoparticles. The obtained Pt/HCSs exhibit significant catalytic activity for the oxidationof methanol.(4) Poly(ionic liquid)(PIL) coated OMCs were prepared by in situ polymerization of3-ethyl-1-vinylimidazolium tetrafluoroborate ([VEIM]BF4) monomer on OMCs matrix. PILon the surface of OMCs can provide sufficient binding sites to anchor the precursors of metalion. PIL/OMCs were employed as support materials for the deposition of ultra-fine Ptnanoparticles via the self-assembly between the negative Pt precursor and positively chargedfunctional groups of PIL-functionalized OMCs. The combination the unique properties of each component endows Pt/PIL/OMCs as a good electrode material. Compared with thePt/OMCs nanocomposites, the Pt/PIL/OMCs modified electrode displays high electrocatalyticactivity towards probe molecules. The improved activity makes Pt/PIL/OMCsnanocomposites promising for being developed as a good electrode material inelectrochemical analysis.(6) A facile template-free strategy was used for synthesis of rectangular mesoporouscarbon nanorods (meso-CNRs). Rectangular crystalline nanorods of nickeldimethylglyoximate complex are firstly formed in water without template, and subsequentcarbonization and selective etching give rise to rectangular meso-CNRs. The rectangularmeso-CNRs possess a large surface area, good conductivity, and high porosity for masstransport, and they can be used as a support for Pt electrocatalysts. The high surface area andporous structure of meso-CNRs facilitates the fine dispersion of Pt nanoparticles. Ptnanoparticles with an average size of3.1nm are distributed onto the meso-CNRs. Theobtained Pt/meso-CNRs exhibit significant catalytic activity towards the oxidation ofmethanol. The superior performance makes rectangular meso-CNRs promising for beingdeveloped as a good support material.

  • 【分类号】O657.1;TB333
  • 【被引频次】1
  • 【下载频次】1525
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络