节点文献

共晶类铵盐含能材料的合成、理论计算与应用研究

Synthesis, Theoretical Calculation and Application Research on Cocrystal Ammonium Energetic Materials

【作者】 马鹏

【导师】 陈厚和; 朱顺官;

【作者基本信息】 南京理工大学 , 军事化学与烟火技术, 2013, 博士

【摘要】 为探索新型高能量密度共晶类含能材料的制备方法,本文设计并制备了一系列铵类共晶含能材料,并对其晶体结构、组装方式、制备过程、爆炸性能以及应用技术进行了相应的研究,具体的研究内容和结论如下:1.对共晶含能材料SY(三乙烯二胺/乙二胺高氯酸盐共晶)和MT(三乙烯二胺/甲胺高氯酸盐共晶)的合成工艺和晶体结构进行了研究。按照质量比为EDA(乙二胺)TEDA(三乙烯二胺)HC1O4=1:1.9:9.6投料制得了以SE(三乙烯二胺高氯酸盐)和YE(乙二胺高氯酸盐)为合成子的共晶含能材料SY,并对其单晶结构进行了测试,得到SY属于正交晶系,晶胞参数为a=8.1030(16)A,b=24.725(5)A,c=10.195(2)A;按照质量比TEDA(三乙烯二胺):Methylamine(甲胺):HC1O4=3.6:1:3.8投料制得共晶含能材料MT,X-射线单晶衍射测定结果表明MT属于单斜晶系,晶胞参数a=8.9750(18)A,b=17.836(4)A,c=10.455(2)A。对SY和MT的晶胞结构分析表明这两种共晶含能材料中含有大量的分子间和分子内氢键,可以形成多个多元环状结构,且每个胺基上的氢均可以形成三叉型氢键。2.对SY和MT进行了理论研究。利用Materials Studio软件中的CASTEP模块在三种不同计算方法(LDA-CA-PZ、GGA-PBE和GGA-PW91)对SY和MT进行了理论计算,晶胞的优化结果表明三种不同计算方法的计算结果无明显差异。对SY的能带研究表明,其能带在-30eV~10eV能量区间内可以明显的分为五个不同的能量区间,分别是导带部分的一个能量区间;价带部分四个能量区间,分别是10eV~0eV、0eV~-10eV、-10eV~-15eV、-15eV~-22.5eV和-25eV~-30eV。这五个能量区间均是由s、p轨道构成。费米能级附近的价带顶部和导带底部都比较平缓,对应着态密度图在该位置比较尖锐,说明在该位置处有较强的相互作用。对MT的能带计算结构表明,MT能带8eV~-27eV能量区间内可以分为四个能量区间:导带部分一个能量区间,区间范围5eV~8eV;价带部分三个能量区间,分别是0eV~-14eV、-17eV~-21eV和-25eV~-27eV,从态密度图可以看出,所有能量区间均是由sp带构成。3.对SY进行了静压下的理论研究。利用CASTEP模块研究了SY在0-100GPa压力下的结构,结果表明在0-10GPa小压力作用下,SY的晶胞参数a、b、c和v呈现随压力增大而减小的现象。高压下能带的计算结果表明当SY晶体加压时,体系中的s轨道的电子和p轨道的电子态密度均有向低能量移动的趋势,同时随着压力的增大,态密度的峰值变小,移动的幅度变大,能量分布变宽,每个能区范围变宽,能隙变小,这表明在高压下SY的感度将会提高。4.对SY进行了结构表征,对其合成工艺进行了优化。采用红外光谱和X-射线粉末衍射对晶体结构进行了分析,结果表明SY中含有EDA和TEDA的高氯酸盐,且其比例为1:1;通过大量实验得到了SY最佳合成工艺:采用EDA (5g)和TEDA (9.4g)室温下配制成混合液,滴加高氯酸进行中和反应制得。反应过程中应注意反应温度,加料速度,以及冷却温度的控制,可以得到颗粒均匀,性能稳定的产物。制备SY过程中产生的母液可以用来配制反应液,实现母液的循环利用。采用母液作为底液时,该反应的得率可以达到100%,同时降低了废液的排放量,减少了对环境造成的污染。5.对SY的爆炸性能和应用进行了研究。对SY进行了5s爆发点、撞击感度、摩擦感度、火焰感度以及静电感度的测试,测试结果表明SY的爆炸性能可以与传统的高能炸药相媲美。本文探索了SY在以下领域的应用,包括:SY可以用作工业雷管的起爆药和主装药,同时也可以作为耐高温雷管单一装药;SY可以应用于分离式点火—起爆系统中的关键部分DDT装药;SY也可以用作固体火箭冲压发动机堵盖的多孔基体装药。

【Abstract】 A seires of new kind perchlorate ammonium cocrystal energetic materials were designed and prepared. The synthesis process, crystal structure, explosive properties and application have been studied. The contents and conclusions are as follows:1. The synthesis process and crystal structure of SY (Triethylenediamine/Ethylenediamine perchlorate salt) and MT (Triethylenediamine/Methylamine perchlorate salt) were studied. The optimal synthesis process for SY is EDA (Ethylenediamine):TEDA (Triethylenediamine):HC104=1:1.9:9.6. Single crystal diffraction analysis indicates that SY belongs to orthorhombic system with cell parameters of a=8.1030(16)A, b=24.725(5)A, c=10.195(2)A. MT was prepared by TEDA (Triethylenediamine): Methylamine:HC104=3.6:1:3.8, which belongs to monoclinic system with cell parameters of a=8.9750(18)A, b=17.836(4)A, c=10.455(2)A. It is easy to form hydrogen bond between perchlorate and amine, and the calculation results indicate there are three different kinds of hydrogen bond in the new cocrystal energetic materials.2. The theoretical calculation of SY and MT was conducted. CASTEP was employed to calculate cell parameters of SY with different computational methods (LDA-CA-PZ, GGA-PBE and GGA-PW91). The results show that band energy of SY can be divided into four parts:0~-10eV,-10eV~-15eV,-15eV~-22.5eV,-25eV~-30eV. It is found that the top of calence bands has large dispersion, wheras the bottom of conduction has nearly small dispersion. The calculation of MT show that band energy of SY can be divided into four parts:5eV~8eV,0eV~-14eV,-17eV~-21eV and-25eV~-27eV.3. High pressure calculation of SY was investigated to find out the relationship between pressure and crystal structure. CASTEP code of Materials Studio was used to calculate SY under high pressure (0-100GPa). The results show that the cell parameters of SY were decreased while pressure increased under0-10GPa. But it is unusual at2GPa where a and c were increased. Electrons from s and p orbits move toward lower energy part. With the increase of pressure, the density of states of SY is broader, the band gap become narrower.4. The structure of SY was characterized and the synthesis processes were optimized. The crystal of SY was got by solvent evaporation method. SY was characterized by FTIR, HNMR spectroscopy, X-ray diffraction (XRD) and single crystal diffraction analysis. The results show that SY is the combination of SE and YE with the ratio of1:1.5. Explosive properties and application of SY were studied. The thermal explosion temperature for5s, impact sensitivity, fraction sensitivity, flame sensitivity and electrostatic spark sensitivity were tested. The results show that SY is a promosing energetic mateiral. The investigations of SY application show that SY can be used as primary and secondary explosive in detonator. Also it can be used in separate initiation system which can be applied in the fuse to enhance its safety because of no use of detonators. The third usage of SY is in the port cover of rocket-ramjet engine, and the performance show that it had prominent advantages.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络