节点文献

血红素衍生卟啉金属配合物的合成及其仿生催化应用研究

The Synthesis and Biomimetic Catalytic Application of Hemin Derivatised Porphyrin Metal Complexes

【作者】 徐士超

【导师】 刘祖亮; 胡炳成;

【作者基本信息】 南京理工大学 , 化学工程与技术, 2013, 博士

【摘要】 金属卟啉是一类重要的共轭有机金属配合物,可以模拟许多酶的活性中心,在仿生催化领域显示出广泛的应用前景。然而,从目前国内外在金属卟啉仿生催化应用研究方面所取得的进展来看,目前研究结果的取得大多以各种全合成的四芳基卟啉作为研究对象,对于天然金属卟啉及其衍生物的仿生催化应用研究较少。血红素衍生物是以来源充足的天然卟啉-血红素为原料合成的一类卟啉类化合物,其结构更接近于卟啉酶的辅基,以血红素衍生物为基础,研究其仿生催化性能,必将为仿生催化剂的设计及高性能仿生催化剂的制备提供新的思路。本论文以氯化血红素为原料,通过脱铁反应、酯化反应、金属加成反应以及自催化氢化反应合成了原卟啉、原卟啉二甲酯、金属原卟啉二甲酯及金属间卟啉二甲酯;通过脱金属-氢化一步反应、酯化反应合成了间卟啉及间卟啉二甲酯;通过脱铁-马氏加成-亲核取代“一锅煮”反应、超声激励酯化反应合成了血卟啉及血卟啉二甲酯;通过脱铁-马氏加成-超声激励酯化醚化“一锅煮”反应合成了血卟啉双醚二酯化合物;通过原卟啉二甲酯的反马氏加成反应合成了异血卟啉二甲酯;通过脱乙烯基反应以及血红素衍生物同胱氨酸酯基的羧胺缩合反应合成了次卟啉以及胱氨酸二甲酯血红素衍生物;将上述合成的血红素衍生物与金属离子络合合成了相应的金属血红素衍生物;探索了各反应的规律,优化了各反应的合成工艺条件,并通过核磁、红外、紫外、质谱等检测手段对合成化合物的结构进行了表征;将合成的一系列3,8-取代血红素衍生物用于催化空气氧化环己烷反应,研究了不同中心金属、不同取代基团对血红素衍生物的催化性能的影响,并初步探讨了催化反应的机理。结果表明:血红素衍生物能够较好的催化环己烷氧化,以钴(II)间卟啉二甲酯为例,在环己烷用量为500mL、催化剂用量为0.01mmol、反应温度为150℃、空气压力为0.8MPa时,环己烷的转化率最高,为16.9%;醇酮的总选择性为84.2%;催化剂的催化活性主要受中心金属离子、取代基的电子效应、空间效应以及催化剂的热稳定性共同影响,吸电子基团的引入能够提高金属血红素衍生物的催化活性,而取代基团的体积增大则使催化剂的催化活性降低;在金属血红素衍生物催化空气氧化环己烷反应过程中,其活性中间体是高价金属氧络合物;以锰(Ⅲ)次卟啉和钻(Ⅱ)次卟啉催化H202氧化鲁米诺化学发光为基础,丌发了灵敏、快速、准确的测定苯酚及己烯雌酚的方法,优化了该体系中的各项实验条件。结果表明、当体系中NaOH的浓度0.1mol·L-1、鲁米诺的浓度足8.0×10-8mol·L-1、锰(Ⅲ)次卟啉的浓度足3.0×10-6g·mL-1、H2O2的浓度为6.0×10-5mol·L-1、主泵和副泵的流速分别为2.5mL·min-1和2.0mL·min-1时,苯酚测定体系的灵敏度最;当体系中H2O2的浓度为6.0×10-5mol·L-1、NaOH的浓度0.4mol·L-1、鲁米诺浓度是8.0x10-7g·mL-1、钴(II)次卟啉的浓度是6.0×10-6g.mL-1、主泵和副泵的流速分别为3.0mL·min-1和2.5mL·min-1时,己烯雌酚测定体系的灵敏度最高;在最佳实验条件下测定苯酚时,线性范围为4.0×10-9~4.0×10-7g·mL-1,检测限为6.63×10-10g.mL-1,测定己烯雌酚时线性范围为6.0×10-10~1.0x10-8g·mL-1和1.0×10-8~1.0×10-7g·mL-1,检测限为3.83×10-10g·mL-1;由于金属血红素衍生物较好的催化性能,在对实际样品的检测中,该体系同其它方法相比检测限更低、稳定性更好、操作过程更简便;通过S-Au共价键作用将胱氨酸二甲酯次卟啉钻(Ⅱ)或胱氨酸二甲酯间卟啉钴(Ⅱ)自组装于金电极表面。修饰电极通过红外、XPS以及循环伏安法进行了表征。利用金属血红素衍生物的催化性能,将自组装电极应用到溶解氧及H202的电催化还原中。实验结果表明,胱氨酸二甲酯次卟啉钴(Ⅱ)或胱氨酸二甲酯间卟啉钴(Ⅱ)通过单分子膜自组装的形式有序、稳定地组装到金电极表面,自组装电极对溶解氧及H2O2具有较好的电催化效果,胱氨酸二甲酯次卟啉钴(Ⅱ)自组装电极可以将溶解氧通过四电子过程还原为H20,而胱氨酸二甲酯间卟啉钴(Ⅱ)自组装电极的差分脉冲峰电流值在H202的浓度为1.96×10-3μnmol·cm-3~0.314μnmol·cm-3范围内同溶液中H202的浓度成正比,可以较好地应用于H202的电催化还原及安培传感,检测限可以达到8.75×10-4μnmol·cm-3。

【Abstract】 Metallo-porphyrins are important classes of conjugated organic metal complexes, which could mimic the active site of many important enzymes and displayed broad appli-cation prospects in a variety of biomimetic catalyzed fields. However, most investigation results for metalloporphyrin biomimetic catalyzed applications are obtained based on the use of totally synthesized tetraaryl porphyrins and their derivatives. There were few resear-ches concerning the biomimetic catalysis application of natural metallo-porphyrins and their derivatives. Hemin derivatives can be prepared in high yield from the red blood pigment heme, which is available in almost any desired amount from slaughterhouse wastes. The close relationship to the naturally hemin makes it great significance to design and develop hemin derivatives with high biomimetic catalytic activities.In this thesis, hemin was chose as starting material. Protoporphyrin, protoporphyrin dimethyl ester, metalloprotoporphyrin dimethyl ester and metallomesoporphyrin dimethyl ester were synthesized from hemin through demetalation reaction, esterification reaction, metal complexation reaction and self-catalyzed hydrogenation reaction; Mesoporphyrin and mesoporphyrin dimethyl ester were synthesized by a "one-step" demetalation-hydro-genation reaction and an esterification reaction; Hematoporphyrin and hematoporphyrin dimethyl ester were prepared from hemin by a "one-pot" reaction of demetalation, Mar-kovnikov addition and nucleophilic substitution reaction and an ultrasound irradiated esterification reaction; Hematoporphyrin diether diesters were prepared from hemin throu-gh a "one-pot" reaction of demetalation, Markovnikov addition and ultrasound promoted esterification-etherification reaction; Iso-hematoporphyrin was synthesized from the anti-Markovnikov addition of protoporphyrin dimethyl ester; L-cystine dimethyl ester was chemically introduced into the edge of deuteroporphyrin or mesoporphyrin by the conden-sation of deuteroporphyrin or mesoporphyrin with cystine dimethyl ester dihydrochloride. The metal complexes of hemin derivatives were synthesized from the metal complexation reaction between hemin derivatives and metal salts. The optimum reaction condations were obtained by optimizing the experimental conditions, and the structures of productions were confirmed by1H NMR, IR, MS and UV-vis.A series of3,8-substituted hemin derivatives were used as the catalysts for the catalyzed oxidation of cyclohexane by air. The effects of metal ions and substituents on the catalytic activities of3,8-substituted hemin derivatives were investigated. The mechanism of this reaction was preliminarily studied. The results showed that3,8-substituted hemin derivatives could smoothly catalyze the oxidation of cyclohexane. For example, in the oxidation of cyclohexane catalyzed by Co(II)-mesoporphyrin dimethyl ester, the conver-sion and the total selectivity of cyclohexanol and cyclohenone reached to16.9%and84.2%, respectively; The catalytic activities were influenced by the electron effects and steric effects of substituents and the thermal stability of catalysts; The with-drawing-elec-tron substituents can improve the catalytic activities of hemin derivatives and the activity decreased with the increasing of the size of substituents; The active intermediates of hemin derivatives in this reaction is high-valence metal hemin derivatives radicals.Based on the great enhancement of Mn(III)-or Co(II)-deuteroporphyrin catalyzed chemiluminescence of luminol, a sensitive and high selective flow-injection chemilumine-scence (FI-CL) method for the determination of phenol and diethylstilbestrol was exploited. The optimum experimental conditions and the possible mechanism were investigated. The results showed that the optimum experimental conditions for the detection of phenol is: CNaOH,0.1mol·L-1; CLuminoL,8.0×10-8mol·L-1; CMn(Ⅲ)DP,3.0×10-6g-mL-1; CH2O2,6.0×10-5mol·L-1; the flow rate of phenol, Mn(III) deuteroporphyrin and NaOH,2.5mL·min-1; the flow rate of luminol and H2O2,2.0mL-min-1. The optimum experimental conditions for the detection of phenol is:CH2O2,6.0×10-5mol·L-1; CNaOH,0.4mol·L-1; Cluminol,8.0×10-7g-mL-1; CCo(Ⅱ)DP,6.0×10-6g·mL-1; the flow rate of diethylstilbestrol, Co(II)-deuteropor-phyrin and NaOH,3.0mL-min-4; the flow rate of luminol and H2O2,2.5mL-min-1. Under the selected optimized experimental conditions, the relative CL intensity was linear with phenol in the range of4.0×10-9to4.0×10-7g·mL-1and linear with diethylstilbestrol in the range of6.0×10-10-1.0×10-8g·mL-1and1.0×10-8-1.0×10-7g·mL-1. The detection limit (3σ) for phenol and diethylstilbestrol were6.3×10-10g-mL-1and3.83×10-10g·mL-1, respectively. Because of the high catalytic ability of metallo-deuteroporphyrins, the developed methods were more sensitivity, simplicity and stability than other methods.Through the covalent band of S-Au, cystine dimethyl ester cobalt(II) deuteropor-phyrin or cystine dimethyl ester cobalt(II) mesoporphyrin were self-assembled to gold electrodes. The modified electrodes were characterized by IR and X-ray photoelectron spectroscopy spectra and confirmed electrochemically by cyclic voltammogram. Based on the catalytic ability of hemin derivatives, the assembled electrodes were used in electro-catalyzed reduction of dissolved oxygen and H2O2. The investigation results showed that cystine dimethyl ester cobalt(Ⅱ) deuteroporphyrin or cystine dimethyl ester cobalt(II) mesoporphyrin could oriently and stably assembled onto the surface of gold electrodes and showed good electrocatalytic ability to the reduction of dissolved oxygen and H2O2. Catalyzed by cystine dimethyl ester cobalt(II) deuteroporphyrin self-assembled gold electrode, dissolved oxygen could be reduced by a4electrons reaction to H2O. Cystine dimethyl ester cobalt(II) mesoporphyrin self-assembled gold electrode showed excellent activity for electrocatalyzed reduction of H2O2and the differential pulse voltammogram peak current of the modified electrode displayed a linear increase with the increased concentration of H2O2from1.96⒋1.0-3μmol·cm-3to0.314μmol·cm-3with the detection limit of8.75×10-4μmol·cm-3.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络