节点文献

杯形波动陀螺关键技术研究

Study on Key Technologies of Cupped Wave Gyroscope

【作者】 陶溢

【导师】 吴学忠;

【作者基本信息】 国防科学技术大学 , 机械工程, 2011, 博士

【摘要】 固体波动陀螺具有精度高、体积小、稳定性好、抗冲击强等突出优点,适用于精确制导武器尤其是战术武器装备,但国内固体波动陀螺的研究水平与国外差距较大,国外高性能的固体波动陀螺对我国进行产品和技术限制。因此,开展固体波动陀螺技术研究,提高自主创新能力具有重要的战略意义。现有的高精度固体波陀螺通常由熔融石英制成,对加工精度和装配精度要求极高,带来了成本高和成品率低的问题,无法实现批量生产。本文设计了一种基于压电效应的杯形波动陀螺,其杯形谐振子由高性能合金金属结构和成品压电电极组成,通过精密机械加工技术和高性能粘接技术完成陀螺的制造。杯形波动陀螺制造工艺相对简单,成本低,精度高,性能稳定,具有批量生产的潜力。本文主要围绕杯形波动陀螺的结构设计、理论建模分析、制造工艺、测控技术和性能测试开展研究,主要研究内容如下:1.设计了一种基于压电效应的杯形波动陀螺,对陀螺的基本结构形式和工作原理进行了分析。通过对陀螺谐振子的模态特征进行了理论分析和有限元仿真,得出其基本振型函数;通过对谐振子的振动结构和压电电极进行力学分析和电学分析,建立了陀螺压电驱动器传感器模型、谐振子的集中刚度模型和集中质量模型。2.在杯形波动陀螺谐振子理论模型的基础上建立了谐振子的动力学方程,利用假设模态法、动力放大法和模态叠加法得到陀螺谐振子驱动模态的稳态响应,推导了陀螺在外界角速度作用下的等效哥氏力矩,求解陀螺谐振子敏感模态的稳态响应和检测信号输出,建立了陀螺角速度灵敏度模型,通过分析灵敏度和工作频率与谐振子几何参数和物理参数之间的关系,优化并确定了谐振子的结构尺寸。3.通过有限元仿真,研究了谐振子加工误差与其动态性能之间的关系,规划了谐振子制造精度目标;选用C902恒弹性合金作为谐振子金属结构的材料,设计了谐振子金属结构的精密机械加工流程和压电电极的胶粘引线方法并制造了谐振子样机;通过分析谐振子结构特征与谐振频率的关系,提出了基于杯底修形的杯形波动陀螺精细平衡方法,并进行了仿真和试验研究,平衡后谐振子的频率裂解接近0.01Hz,满足陀螺动态特性要求。基于上述技术制造出陀螺表头样机,样机的工作模态频率为3954Hz。4.根据杯形波动陀螺的机电耦合特点,建立了谐振子的等效电路模型,通过谐振子的频率响应曲线辨识了等效电路参数;研究了基于相位控制的谐振激励方法和基于ITAE指标的PID稳幅控制技术,提高了陀螺驱动模态的稳定性;研究了谐振子力平衡控制技术和角速度的相关解调检测方法,增加了陀螺的检测带宽和线性度。基于上述技术,研制了杯形波动陀螺测控电路,并进行了电路测试。5.对杯形波动陀螺的原理样机进行了性能测试,室温下杯形波动陀螺在±220°/s动态范围内的刻度因子为50.5mV/°/s,非线性度为216ppm,常温零偏稳定性为0.86°/hr,角度随机游走为0.07°/h1/2,全温区条件下,陀螺的频率温度系数为-14.4ppm/°C,零偏温度系数为0.066°/s/°C。杯形波动陀螺的性能基本达到战术级陀螺性能要求。

【Abstract】 The solid-state wave gyroscope has the advantages of high operation accuracy,small size, good stabilization and shock resistance, which is suit for the precision guidedweapons, especially for the tactical weapons and system. However, domestic solid-statewave gyroscopes couldn’t achieve the same performances as foreign ones, andexporting of high performance solid-state wave gyroscopes is forbidden by foreigngovernments. Therefore, researching the solid-state wave gyroscope technologies toimprove the ability of independent innovation is of great importance.Up to now, the highest performance solid-state wave gyroscopes are always madeof fused quartz, which needs high machining precision and assembly precision, andleads to high cost and low production efficiency, therefore, mass production is limited.In this dissertation, we explore the possibility of developing a novel cupped solid-stategyroscope based on piezoelectric effect. The cupped resonator of the gyroscope consistsof a high performance metallic structure and confectioning piezoelectric electrodes,which is fabricated by precision mechanical machining and precision adherencetechnologies. The cupped wave gyroscope has the advantages of simple manufacturingprocess, low cost, high performance and long life, which is a good candidate for massproduction.In this dissertation, we present the structure design, theoretical modeling andanalysis, fabrication process, control technology and performance test of the cuppedwave gyroscope. The main content includes:1. The cupped wave gyroscope based on piezoelectric effect is designed, and thebasic structure and operation principle are analyzed. The functions of vibration modeare obtained after analyzing the characteristic of vibration mode by theoretical methodand finite element method. Based on the mechanical analysis and electrical analysis ofthe vibrating structure and piezoelectric electrode, the piezoelectric actuator and sensormodel, lumped-mass model and lumped-stiffness model of the gyroscope are built.2. The dynamic function of the cupped resonator is established based on thetheoretical model. The dynamic responses of the active mode are achieved by assumedmode model method, dynamic magnification method and modal superposition method.The equivalent Coriolis moment the dynamic responses and detection signal of thesense mode are calculated, hence, the angular rate sensitivity of the gyroscope isachieved. By analyzing the effects of geometric and physical parameters on thesensitivity and natural frequency, the optimized structural dimensions of the cuppedresonator are25mm×18mm×1mm, the minimum dimension is0.3mm.3. The machining precision of the cupped resonator is planned based on theanalysis of the effect of fabrication errors on dynamic characteristics by finite element method. The C902alloy with constant elastic parameters is selected for metal structureof the cupped resonator. The mechanical machining process of the metal structure andthe adherence technology of the piezoelectric electrodes are designed. Several cuppedwave gyroscope samples are fabricated. The precision balanced method based oncup-bottom trimming is presented by analyzing the relationship of structure and naturalfrequency of the resonator. By using the precision balance method, the frequency splitof the resonator is minimized to0.01Hz, which satisfies the dynamic index of thegyroscope. The natural frequency of the fabricated prototypal cupped wave gyroscope isabout3954Hz.4. The equivalent circuit model of the resonator is deduced according to theelectromechanical coupling characteristics of the gyroscope, and the parameters of themodel are recognized from frequency response curves of the resonator. Based on thephase control method and ITEA index method, a stable resonant loop is designed toexcite the active mode of the resonator. The force balance control method of theresonator is researched and the angular rate signal is demodulated from the forcebalance control signal, which improves the bandwidth and linearity of the gyroscope.Based on the control technology above, the readout circuit of cupped wave gyroscope isdesigned and tested.5. A fabricated cupped wave gyroscope is characterized. The scale factor at roomtemperature is measured as50.5mV/°/s with a nonlinearity of216ppm in a range of±220°/s. The bias stability at room temperature is0.86°/hr and the angle random walk isabout0.07°/h1/2. At full operation temperature range, the frequency temperaturecoefficient is-6.5ppm/°C and the bias temperature coefficient is0.066°/s/°C. Theperformance indexes of cupped wave gyroscope reach tactical grade approximately.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络