节点文献

ZnO薄膜加速度传感器的研制

Research on ZnO Thin Film Acceleration Sensor

【作者】 李宏力

【导师】 孙以材;

【作者基本信息】 河北工业大学 , 微电子学与固体电子学, 2012, 博士

【摘要】 本文目标是研制ZnO薄膜压电传感器。本文分析了高C轴取向ZnO薄膜的性能,对ZnO薄膜的压电效应进行测试(压电系数、电滞回线),设计了压电传感器的测量电路,设计了悬臂梁结构的压电微力传感器。本文的工作及取得的研究成果总结如下:用磁控溅射法在硅衬底上沉积ZnO薄膜,利用XRD、AFM、SEM等测试手段对薄膜的性能进行测试分析。研究了各个工艺参数对薄膜性能的影响(衬底温度、溅射功率、靶距、氧氩比、溅射压力、退火温度等)。优化出最佳工艺条件:250℃衬底温度、100W溅射功率、7.5nm靶距、5:5氧氩比、1.0pa溅射压力、600℃退火温度。在最佳工艺条件下,硅衬底上获得了均匀、致密的ZnO薄膜。所得薄膜具有较好的表面形貌、小粗糙度(RMS:2.038nm),高C轴取向,高电阻率(>107Ω.cm)。纵向压电系数测量系统由原子力显微镜和数字锁相放大器组成。本文完成了ZnO薄膜纵向压电系数的测量,厚度0.82μm和1.64μm的ZnO薄膜对应的纵向压电系数分别为27.31pm/V和50.31pm/V。ZnO薄膜的压电性和长期稳定性较好,薄膜厚度与纵向压电系数成正比。本文对电滞回线参数测量进行测量,验证ZnO薄膜的压电性随厚度增大而增强。本文研究了微机械加速度传感器的工作原理。作者应用机电等效模拟技术,创建传感器的等效电路模型,利用等效电路模型对微机械加速度传感器进行仿真,效果较好。本文探讨了MEMS技术的应用。作者应用悬臂梁结构对压电微力传感器进行设计。本文建立传感器的力-电荷量转换效率优化模型,优化了微悬臂梁的薄膜和层的厚度,使器件的力-电荷量转换效率提高。随着微传感器理论的进一步成熟以及MEMS技术的发展,需要不断探索、发现并解决更多的问题。希望本文的工作能够为ZnO薄膜压电加速度传感器的发展有一点贡献。文中的不足之处敬请各位专家、老师批评指正。

【Abstract】 In this paper, ZnO thin film acceleration sensors developed for the goal. This paperanalyzes the high C-axis oriented ZnO thin film properties, the piezoelectric effect of ZnO thinfilm test (piezoelectric coefficient, hysteresis loop), the design of piezoelectric sensors measuringcircuit, designed the structure of the piezoelectric micro-cantilever force sensor. This work andthe research results are summarized as follows:By magnetron sputtering ZnO thin films deposited on silicon substrates, using XRD,AFM, SEM test means to test the performance of thin film analysis. Of the variousprocess parameters on film properties (substrate temperature, sputtering power, targetdistance, oxygen argon ratio, sputtering pressure and annealing temperature, etc.).Optimize the best conditions:250℃of substrate temperature,100W sputtering power,7.5nm target distance, oxygen argon ratio of5:5,1.0pa sputtering pressure,600℃annealing temperature. Under optimum conditions, the silicon substrate to obtain auniform and dense ZnO films. Obtained film has good surface morphology, the smallroughness (RMS:2.038nm), high C-axis orientation, high resistivity (>107.cm).Longitudinal piezoelectric coefficient measurement by atomic force microscopy anddigital phase-locked amplifier. This completed the longitudinal piezoelectric coefficientof ZnO thin film measurement, the thickness of0.82μm and1.64μm of the ZnO thinfilm longitudinal piezoelectric coefficients corresponding to27.31pm/V and50.31pm/V. Piezoelectric ZnO thin films and long-term stability is good, the film thickness isproportional to the longitudinal piezoelectric coefficient.In this paper, hysteresis loops were measured parameter measurement to verify thepiezoelectric ZnO film increases with the thickness increased.In this paper, micromachined accelerometer works. Mechanical equivalent of theapplication of simulation technology to create the equivalent circuit model of the sensorusing the equivalent circuit model for simulation of micromachined acceleration sensor,the effect is better.This paper discusses the application of MEMS technology. Application of piezoelectricmicro cantilever force sensor structure design. This established the force sensor-chargeconversion efficiency optimization model to optimize the micro-cantilever and thethickness of the film, so that the device power-charge conversion efficiency.With the theory of micro-sensors and MEMS technology to further the development ofmature, need to constantly explore, discover and solve more problems. I hope this work can ZnOpiezoelectric film acceleration sensors that contribute to the development. The inadequacies ofthe text Please experts, teachers criticized the correction.

  • 【分类号】TP212;TN304.055
  • 【被引频次】1
  • 【下载频次】213
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络