节点文献

多孔材料对瓦斯爆炸抑制作用研究

Porous Materials Inhibition on Gas Explosion

【作者】 魏春荣

【导师】 徐敏强;

【作者基本信息】 哈尔滨工业大学 , 一般力学与力学基础, 2013, 博士

【摘要】 煤炭是中国主要能源,在未来较长时期内在能源结构中仍将居主体地位。我国煤矿95%以上属于井工开采煤矿,且多数为有瓦斯涌出矿井,随着煤炭需求量的激增,煤矿生产规模加大,产能和开采深度增加,使煤矿瓦斯涌出量大幅增高,煤矿重特大瓦斯事故的频繁发生,严重威胁着煤矿安全生产和工人的生命安全。目前控制或减弱瓦斯爆炸破坏的传统矿用阻隔爆设施尚不能达到有效抑爆的效果,因此,开展新型瓦斯爆炸阻隔爆材料及装置的研究迫在眉睫。近年来,多孔材料因其多孔、轻质、高比强度、减振、阻尼、吸音、隔音、散热、吸收冲击能等多种物理性能而受到关注,已在民用工程防护和军事领域得到了广泛的应用,国内外学者对其性能进行了广泛研究,并取得了大量的研究成果。本论文以煤矿为背景,通过理论分析、模拟管道实验、数学建模、设计及预测等方法,对多孔材料抑制瓦斯爆炸作用及应用技术进行研究,具体来讲,本文在以下几个方面进行了探索和研究:自行设计制作了断面为30cm×30cm方形实验管道,为目前国内所见报道进行管道内瓦斯爆炸研究断面较大的方形管道装置,采用火焰温度传感器对管道内爆炸火焰进行研究,拓宽了对管道内爆炸火焰的研究思路,实现了计算机同步采集各测点的火焰温度和压力数据,从而能够研究火焰温度与压力传播发展的过程。对管道内定量瓦斯气体爆炸传播进行了实验研究,获得了压力、火焰温度的传播规律。对泡沫陶瓷(5cm厚度以上)和金属丝网(30目和40目)抑制管道内瓦斯爆炸进行了实验研究,实验现象表明,泡沫陶瓷和金属丝网材料都具有一定的阻火能力,泡沫陶瓷具有优异的消声性能。泡沫陶瓷抗烧结性能良好,抗爆炸冲击波损毁性能较差。金属丝网抗烧结性能较差,抗爆炸冲击波损毁性能良好。对管道火焰温度的研究表明,泡沫陶瓷和金属丝网都对火焰温度有一定的衰减效果,降低了与相同无障碍物条件下的火焰温度,通过火焰温度数据的对比,金属丝网对火焰温度的衰减效果优于泡沫陶瓷。对管道爆炸超压的研究表明,泡沫陶瓷和金属丝网都对爆炸超压具有一定的衰减效果,降低了与相同条件下无障碍物的爆炸强度,通过衰减超压数据对比,泡沫陶瓷材料对爆炸超压的衰减效果优于金属丝网材料。从实验结果来看,金属丝网的层数与目数参数对抑爆效果影响较大。泡沫陶瓷的厚度参数对抑爆效果影响较大,泡沫陶瓷材质对抑爆效果影响较小。通过实验结果和机理分析了材料自身参数对抑爆效果的影响,总结了泡沫陶瓷与金属丝网阻隔管道内瓦斯爆炸的优、缺点。对多孔泡沫铁镍金属抑制管道内瓦斯爆炸进行了实验研究,实验现象表明,多孔泡沫铁镍金属具有优异的消声性能和阻火能力,还具有良好的抗冲击波损毁性能和抗烧结性能。对管道火焰温度和爆炸超压的研究表明,多孔泡沫铁镍金属能够抑制爆炸波能量的传播,对火焰温度和爆炸超压具有一定的衰减效果,降低了与相同无障碍物条件下的火焰温度和爆炸强度。通过火焰温度和超压衰减数据对比,多孔泡沫铁镍金属对火焰温度、爆炸超压衰减效果优于泡沫陶瓷和金属丝网。测点四,多孔泡沫铁镍金属相比40目40层金属丝网对最大火焰温度的衰减率提高了38.8%,相比Al2O37cm大孔泡沫陶瓷提高了29.5%。测点七,多孔泡沫铁镍金属相比40目40层金属丝网体对爆炸超压的衰减率提高了29.9%,相比SIC5cm大孔泡沫陶瓷提高了22.4%。从实验结果来看:多孔泡沫铁镍金属的孔径、厚度及相对体积密度对抑爆效果影响较大,多孔泡沫铁镍金属的基体材料组分对抑爆效果影响较小。研究了多孔泡沫铁镍金属衰减瓦斯爆炸压力和火焰波的机理,通过实验结果和机理分析了多孔泡沫铁镍金属自身参数对抑爆效果的影响,采用多孔材料抑爆时,应考虑材料在管道中阻塞比,合理配置参数,才能达到减少材料损毁程度,加强抑爆效果的目的。研究了多孔材料衰减爆炸超压和阻隔火焰的机理,结合实验结果对比分析了金属丝网、泡沫陶瓷、多孔泡沫铁镍金属抑制瓦斯爆炸的机理及作为抑爆材料的优劣势。将衰减爆炸超压和衰减火焰温度评估方法相结合,提出了一种抑爆效果综合定量评估算法,并建立了基于爆炸超压、火焰温度和熄爆参数法的多孔材料阻隔爆效果评估数学模型,用以进行抑爆效果评估,为多孔材料在实验和工程应用过程中的性能评定提供科学依据。设计了基于多孔材料的煤矿采掘工作面阻隔爆装置与瓦斯抽放管道阻隔爆装置,有望解决现有被动和自动阻隔爆技术的局限性,从而抑制二次爆炸和多次爆炸。通过ABAQUS有限元软件对阻隔爆装置在井下瓦斯爆炸过程中的受力情况进行了分析,模拟瓦斯爆炸破坏力对多孔材料的受力响应,结果显示,多孔材料作为抑爆材料可承受瓦斯爆炸冲击力作用。对多孔材料阻隔爆装置动作时间控制问题进行了探讨,提出预测控制理念,建立了基于马尔科夫链和灰色动态理论的煤矿瓦斯涌出量预测模型。实例分析表明:马尔科夫链和灰色动态预测法预测精度较高,具备应用可行性。最后构建了煤矿瓦斯涌出量的预测控制体系。

【Abstract】 Coal is the primary energy in China, it will remain the principal place in theenergy structure over a long period in the future. Our coal mine more than95%is pitmining, and most of them belong to the gas emission mine. Coal mine severe gasaccident occurs frequently, it has serious threat with coal mine safety and workers oflife security. Traditional barrier burst facility which currently used to control orreduce gas explosion damage has not been able to achieve effective explosion effect.Thus, study on a new block of explosive materials and devices have been alreadyextremely urgent. In recent years, the porous material was concerned because of avariety of physical properties, such as porous, lightweight, high strength, vibration,damping and sound absorption, sound insulation, heat sinks and absorption ofimpact energy. It has been used in the field of civil works and military widely.Scholars have conducted extensive research on its performance at home and abroad,and has made a large number of research results. Bases on coal mine, the articleresearches on porous materials on the effect of barrier gas explosion propagation byusing theoretical analysis, experiment, mathematical modeling and Design andprediction method. In particular, the article have explorations and research on:Experimental pipeline, which section is30cm x30cm square, has designed tobroaden the pipe explosion of the flame of perspective, realized computersynchronous collection of the point pressure and the flame temperature data, so youcan study on flame temperature and pressure process of development ofcommunication. which is the largest gas explosion research section square pipeworkfor the current domestic pipeline seen within the reports and lead used flametemperature sensor on pipeline within explosion flame for research. Obtain thepressure, the temperature of flame propagation law, based on the experimentalresearch of quantitative gas explosion transmission in pipe.The ceramic foams (thickness5cm above) and metal mesh (30meshes and40meshes) restrain in the piping gas explosion was investigated. The experimentphenomenon shows that two kinds of materials have certain fire resistances, theanti-explosive shock wave damage performance of foamed ceramics is poorer butanti-agglutination is favorable. Anti-explosive shock wave damage performance ofmetal mesh is favorable but anti-agglutination is poorer. Study on flame temperatureof the pipe indicates that ceramic foam and wire mesh for flame temperature tomake the attenuation effect, reduces the flame temperature with the same conditionwithout obstruction, by comparison of flame temperature data, wire meshattenuation effects on flame temperature is better than ceramic foam. On the pipeline explosion overpressure of studies have shown that ceramic foam and wire mesh onexplosion overpressure with a certain degree of attenuation effect, reduces thestrength of the explosion and no obstructions under the same conditions, byattenuation of overpressure data comparison, foam ceramic material on theattenuation of blast overpressure effect is better than wire mesh materials. From theexperimental results, Layer and mesh of wire mesh, thickness and aperture ofceramic foam all have a great influence on effectiveness of explosion suppression,foam ceramic material on explosion suppression effect is small. Based on themechanism of experimental results and analysis of the influence of materialparameters on the explosion itself, the wire mesh and foam ceramic barrier pipe gasexplosion of pros and cons was summarized.The porous foam iron-nickel metal restrain in the piping gas explosion wasinvestigated. The experiment phenomenon shows that porous foam iron-nickel metalhas excellent acoustic attenuation performance, fire resistances, anti-shock wavedamaged performance and anti-sintering performance. Results of explosion flametemperature and overpressure on pipeline indicates that porous foam iron-nickelmetal can inhibition explosion wave energy of spread, reduces the explosionstrength with the same condition that without obstruction. Through the comparisonof the experimental data, the porous foam of Fe-NI metal is better than foamceramics and metal mesh on attenuation effect of flame temperature and explosiveoverpressure.Measuring point four, porous foam iron-nickel metal compared to40head40-wire mesh for maximum flame temperature decay rate increases38.8percent, than Al2O3ceramic foam that7cm large hole increases29.5percent. Onmeasuring point seven, porous foam iron-nickel metal compared to40head40-wiremesh on explosion overpressure decay rate increases29.9percent, compared to SICceramic foam that5cm large hole increases22.4percent. From the experimentalresults, the pore size, thickness and relative bulk density of porous foam iron-nickelmetal have a great influence on effectiveness of explosion suppression, material ofiron-nickel metal components on explosion effects is small. Porous foam iron-nickelmetal attenuation mechanism of pressure and gas explosion flame wave wasanalyzed. Based on the results of the experiment and mechanism analysis of porousfoamed iron-nickel metal influence of parameters on the explosion itself, whenusing the porous material to explosion suppression, you should consider blockageratio and reasonable configuration parameters of materials in pipeline to achieve thereduction of material damage and strengthen the purpose of the explosion.Study on the mechanism of porous material attenuation overpressure andblocking flame, with experimental results comparative analysis of wire mesh,ceramic foam,bubble iron-nickel metal inhibition mechanism of gas explosion andexplosion suppression material advantages and disadvantages. Combined assessment method of attenuation explosion overpressure and flame temperature, acomprehensive quantitative evaluation algorithm of explosion suppression effectwas proposed, Established based on explosion overpressure, flame temperature andquenching parameters method of porous material cut blasting effect evaluationmathematical model, that will used for explosion effects assessment, offer scientificbasis for porous materials in experiment and its application in performanceassessment.Based on porous material, coal mining face blocked explosive devices and gasdrainage pipeline blocked explosive solid devices were designed. The device isexpected to address the limitations of existing passive and automatic barrier bursttechnology, it has explosion effect for secondary explosion and a series ofexplosions in coal mine underground.Using ABAQUS finite element analysissoftware for mechanical analyzing of porous materials, simulations in porousmaterials under conditions of underground gas explosion, simulation results showthat porous foam iron-nickel metal as a gas explosion suppression material canwithstand impact.The subject has discussed the action time control of porous barrierexplosive devices, predictive control concept was proposed. Coal mine gas emissionprediction model that based on Markov chains and gray dynamic theory wasestablished. Instance analysis shows that: Dynamic prediction of Markov chains andgrey prediction of high precision, with application. Finally the paper constructs apredictive control of coal mine gas emission rate.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络