节点文献

超磁致伸缩致动器的电—磁—热基础理论研究与应用

Research on the Electric-magnetic-thermal Characteristics of Giant Magnetostrictive Actuator and Its Applications

【作者】 张成明

【导师】 李立毅;

【作者基本信息】 哈尔滨工业大学 , 电机与电器, 2013, 博士

【摘要】 超磁致伸缩材料(Giant Magnetostrictive Material-简称GMM)是一种具有双向可逆能量转换特性的智能材料。基于超磁致伸缩材料的致动器(GiantMagnetostrictive Actuator-简称GMA)相比传统结构型致动器,具有高精度、高速度、高可靠等特点。在精密运动控制、主动减振、精密流体控制等技术领域具有广阔的应用前景。本文以基于超磁致伸缩材料的致动器为研究对象,对超磁致伸缩材料基本电磁参数耦合规律、等效电路模型以及超磁致伸缩致动器的高均匀驱动磁场设计方法和动态损耗理论进行了研究。研制了不同结构的致动器原理样机,搭建了综合实验平台。研制了超磁致伸缩流量控制阀门(GiantMagnetostrictive Valve-简称GMV)并进行了试验测试。研究成果对超磁致伸缩材料致动器的设计和应用具有普遍指导意义,研制的超磁致伸缩阀门微流量控制领域具有现实应用价值。以磁致伸缩材料的线性压磁方程为出发点,基于自由能极小原理和磁畴偏转理论,推导了简化的超磁致伸缩材料应力-应变线性关系数学方程,直观表达出材料的电磁参数与输入激励之间的耦合规律,并定性地进行了试验分析验证。建立了超磁致伸缩材料的集总参数等效电路模型闭合磁回路下GMA等效电路模型,直观的表达了材料工作过程中宏观位移输出与外电路激励参数之间的耦合规律。在分析总结超磁致伸缩材料致动器磁路结构特点的基础上,利用等效磁路法对不同磁路结构螺线管线圈的驱动磁场变化规律进行了研究分析,得到了螺线管几何尺寸和磁路结构对驱动磁场均匀性和驱动效率的影响制约关系。研究结果表明:闭合磁路结构下,驱动线圈与磁致伸缩材料棒轴向长度一致时,材料棒的轴向磁场分布均匀性最好。导磁块的接触面直径对材料棒端部径向磁场分布规律影响最大。采用分段电流驱动的方式可以有效的改善材料棒轴向磁场均匀性,但是实现起来较困难。结合超磁致伸缩材料致动器的等效电路模型,推导了致动器电感参数的解析表达式。考虑磁致伸缩材料工作过程中磁导率变化特性,利用有限元方法分析了GMA电感参数的变化规律。进一步建立完善了GMA高均匀性驱动磁场和稳定电磁参数的优化设计准则。针对超磁致伸缩致动器中的基础热问题展开研究。基于磁畴偏转理论建立完善了超磁致伸缩材料磁化曲线的数值计算方法。对超磁致伸缩材料动态励磁条件下的磁场建立过程和损耗进行了分析计算,明确了超磁致伸缩致动器动态励磁下的各种损耗分配规律并进行仿真计算和分析。在此基础上,研究总结了超磁致伸缩致动器中的热传递、热平衡以及温升特性规律。研究结果表明:超磁致伸缩致动器的驱动频率将影响材料中的磁能损耗,导致超磁致伸缩致动器内部温度分布规律发生改变。低频下,磁致伸缩材料棒的端部温度高于中间位置;而高频下,材料棒中间位置的温度高于端部温度。最后,研制了基于超磁致伸缩材料的致动器。设计了专用驱动电流源,构建了GMA综合测试平台。针对GMA静态、动态位移输出特性进行了试验测试分析。结果表明GMA的动态响应取决于驱动电流源的响应时间,由于动态磁滞和涡流效应的影响,随着驱动电流频率的增加,GMA输出位移略有降低。研制了两种采用不同形状GMM棒的超磁致伸缩阀门。测试结果表明在稳态流量相同的情况下,具有位移放大机构的GMV较传统电磁阀的响应时间提高了近15倍;内部冷却型GMV单次开关的流量仅为0.0099g/s,结合PWM控制技术,非常适合在高压、高速、高精度的流量控制系统中应用。

【Abstract】 Giant magnetostrictive material (GMM) is a kind of smart materials withbidirectional reversible energy conversion characteristics. Compared to thetraditional actuators, actuators based on giant magnetostrictive material have manymerits, such as high precision, high speed, high reliability, etc. It has broadapplication prospects in precision motion control, active damping, precision fluidcontrol technology, et al. In this thesis, different types of GMA are put into forward,and the problems of stress-strain linear relationship model, the equivalent circuitmodel, highly uniform driven magnetic field design method and dynamic lossesnumerical method have been studied. Different kinds of GMA are developed and acomprehensive experimental platform is built. Two kinds of giant magnetostrictiveflow control valves (GMV) are developed and tested. The results have a universalsignificance for the design and application of GMA. And the development of GMVhas a practical application value.Based on free energy minimization principle and the magnetic domaindeflection theory, this thesis derived a simplified giant magnetostrictive materialstress-strain linear mathematical model from the micro actuating mechanism ofGMM. The lumped equivalent circuit model and distributed parameter equivalentcircuit model of GMM are established. Considering the eddy hysteresis loss and theinfluence of high magnetic permeability material to the external magnetic circuit,the equivalent circuit model of the GMM under closed magnetic loop is analyzedand established. It can express the coupled rules between the macro displacementoutput and the excitation parameters during the GMM’s work process, intuitively.Based on the analysis of the magnetic circuit structure feature for GMA, thevariation of the magnetic field with different driving solenoid magnetic structuresare studied, using the equivalent circuit method. The influences of the geometry ofsolenoid and the magnetic structure on the driving magnetic field homogeneity anddrive efficiency are derived. The results show that: with a closed magnetic circuitstructure, the GMM rod has the highest axial uniformity magnetic field when thedrive coil has the same axial length of the GMM rod. The diameter of the magneticblocks is most impact of the radial magnetic field distribution at the ends of GMMrod. Using segmented current-driven approach can effectively improve theuniformity of axial magnetic field in GMM rod, but more difficult to be realized.The analytical expression of the GMA’s inductance parameters is derived. Thevariation of the GMA’s inductor parameters is studied using the finite elementmethod, considering the changes with permeability characteristics of GMM. And then, the optimized design guidelines for GMA are established.A further research is carried on the thermal problem of GMA. Based onmagnetic domain deflection theory, the magnetization curve numerical method ofGMM is derived. The establishing process of the magnetic field and the loss ofGMA is analyzed and calculated. And the loss and heat under dynamic excitationare analyzed by simulation. Then the heat transfer, heat balance and temperaturecharacteristics of GMA are summarized. The results showed that: the drivefrequency of GMM will affect the magnetic energy loss, changing the distributionin GMA temperature. Under low frequency, the temperature in the end portion ofGMM rod is higher than that in the middle. Corresponding to the high frequencysituation, the temperature of the middle part in GMM rod is higher.Finally, the actuator based on the giant magnetostrictive material isdeveloped.A special current source is designed and the integrated test platform forGMA is constructed. The static and dynamic displacement output characteristics ofGMA are tested and analyzed.The results show that, dynamic response of GMAdepends on the response time of driving current source. Due to the dynamichysteresis and eddy current effects, the output position of GMA is slightly lower asthe drive current frequency increases.Two kinds of GMV with different shape ofGMM rod are designed.Test results show that, under the same steady flow rate state,the response time of the GMV with a displacement amplification mechanism isnearly15-times less than the conventional solenoid valve.The flow rate of singleswitch period of the GMV with internal cooling structure is only0.0099g/s.Combined with PWM control technology, it is suitable for high-pressure,high-speed, high-precision flow control system applications.

  • 【分类号】TB381;TH13
  • 【被引频次】5
  • 【下载频次】866
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络