节点文献

多运动模式轮腿移动机器人的运动学分析与研究

Kinematics’ Analysis of the Multi-motion Mode Wheel-leg Robot

【作者】 宋孟军

【导师】 张明路;

【作者基本信息】 河北工业大学 , 机械制造及其自动化, 2012, 博士

【摘要】 近年来仿生机器人的研究一直是非常活跃的一个领域,运动机理在仿生学的研究当中有着至关重要的作用。有些移动机构,将轮式移动机构和腿式移动机构相结合,组合成了轮腿式移动机器人,增强了移动机器人在复杂路况环境下的道路适应性和通过性,本文的研究对象为轮腿式移动机器人,具有六条结构相同的移动腿,可利用变形关节,完成多运动模式下的移动行走功能,进一步增强了移动机器人对非结构环境的适应性和通过性。首先对多运动模式轮腿移动机器人的单腿机构进行了运动学分析,利用D-H法则构建了其腿部的运动学模型,并对运动学方程正逆解进行了求解和仿真验证;而D-H法则在某些情况下影响了坐标系构建的多样性,并且带来繁杂的分析步骤,因此本文针对多运动模式轮腿移动机器人的机构特点,提出冗余坐标系的概念,从而为单腿机构坐标系的快速构建提供一种新的解决方案,提高了运动学模型的构建效率。利用矢量积法对多运动模式轮腿移动机器人的雅克比矩阵进行求解,对矢量积法所求结果进行数学仿真和三维模型的仿真验证。同时利用微分变换法进行雅克比矩阵的求解,并利用所求结果对矢量积法再次进行验证,以表明矢量积法求解的正确性。分析了单腿机构的灵活性,求解了多运动模式轮腿移动机器人单腿机构的工作空间,为多运动模式轮腿移动机器人运动规划、避障提供了良好的解决方法。求解单腿机构灵活性的过程中,引入灵活度、灵活工作空间等概念,利用几何构图法和数值分析法对多运动模式轮腿移动机器人的灵活性进行了分析研究。分析结果证明了单腿机构的平面灵活性,并最终通过利用遍历整个服务球的方法仿真验证了多运动模式轮腿移动机器人单腿机构在笛卡尔坐标系下的空间灵活性。利用动力学求解方法对多模式移动机器人进行动力学研究的初步探索。结果表明,第二类拉格朗日方程所求结果较为繁琐,不便于计算和实时控制。利用解析几何的坐标变换方法,构建此种多运动模式轮腿移动机器人并联机构的运动学模型;并利用构建并联机构各分支末端点之间的几何关系,求解下平台坐标系原点和坐标系姿态矩阵,进而构建了该机构的运动学正解模型;仿真结果表明,该并联机构运动学模型正确;最后,应用人工鱼群算法对多运动模式轮腿移动机器人并联机构的运动学正解进行求解,并对运动学正解结果进行仿真验证,给出了仿真验证结果。构建了多运动模式轮腿移动机器人运动学逆解模型,给出运动学逆解的解析解,利用几何图解法求解出全部奇异解的存在状况,并给出逆解解析解的正确解,分别以位置和姿态为输入,对多运动模式移动机器人运动学逆解进行了数值求解和仿真验证。利用多运动模式轮腿移动机器人移动机构的运动学逆解模型,基于逆解结果,对多运动模式轮腿移动机器人移动机构的直线行驶、转弯行驶、原地旋转的步态规划进行解算,为多运动模式轮腿移动机器人的自主步态规划提供了理论基础。

【Abstract】 Biomimetic robots’ research has always been a very active field in the last decades.Mechanism of the movement plays an important role in biomimetic robots’ research. Some of theresearchers, combine the feature of wheeled robots and the legged robots, formed the wheel-legrobots, enhancing the robot’s adaptability in different kinds of terrains. The object of thisdissertation is a kind of wheel-leg robot. This robot has six legs with the same mechanism. Thisrobot has differnt kinds of movment model. With the joints’ deformable ability, this kind ofbiomimetic mobile robot can travel by legs or wheels, so this kind of biomimetic mobile robotcan walk in different kinds of ways, so this robot can not only drive very fast but also hasenhanced the adaptability in complex grounds furtherly.In this dissertation, we firstly analyze the kinematics of one leg of the multi-motion modewheel-leg robot, establish the kinematic model using D-H rule, solve and simulate the forwardand inverse kinematics of the legged mechanism of the multi-motion mode wheel-leg robot; Thetraditional approach for constructing the kinematic model of serial mechanisms is to solve thecoordinate transformations of the kinematic equations by using D-H rule, however, this approachhas been proved to be less efficient in constructing some complex kinematic mechanisms, andthe analysis processes for coordinate transformations are usually not easy to determine.Therefore, the redundant coordinare system is proposed and established homogeneoustransformation matrices of Y axis to simply the transforming and calculating process.Simultaneously, we introduce the definition of Jacobian matrix, vector multiplicationmethod, differential transform method, and solve the Jacobian matrix with the vectormultiplication method, and simulate the final result with mathematical software and3D modelsoftware; we also solve the jacobian matrix with differential transform method, and at last wetest the vector multiplication method with the differential transform method, the analysis resultssupply a better way for the kinematic analysis of the robot studied by us.The study of the flexibility can provide a better solution for the locomotion ability, and theavoidance ability of the multi-motion mode robot in this dissertation. By introudcing the definition of flexibility, workspace of flexibility etc, we use geometric composition method andnumerical analysis method to study the flexibility of the legged mechanism of the multi-motionmode robot. Based on analyzing the planar flexibility, we solve the spatial flexibility of thelegged mechanism in this paper, and in the end, we solve the service sphere of the leggedmechanism of the robot to give the flexibility simulation results.In this dissertation, we also have studied the dynamics model of the legged mechanism ofthe robot. The final results show that the lagrange’s equations of the second kind is complicatedfor solving the dynamics model of the legged mechanism, and is not a convenient method forcalculation and real-time control.We continue to construct the parallel mechanism of the multi-motion mode robot using thecoordinate transformation methods. By constructing the geometric model of the end-effectors ofthe parallel mechanism, we solve the position and orientation of the bottom platform, and weconstruct the forward kinematics mode of the parallel mechanism. And we solve the forwardkinematics mode of the parallel mechanism of the multi-motion mode robot using artificial fishswarm algorithm (AFSA). Finally, we simulate the results of the forward kinematics of theparallel mechanism.We construct the inverse kinematic model of the multi-motion mode wheel-leg robot tosolve the analytical solution of the inverse kinematics, and solve the singular solution of theinverse kinematics by using geometric method. When the input of the top platform areorientation and position respectively, we can solve and simulate the inverse kinematics mode.Based on solution of the inverse kinematics, we can generate the straight walking gait, thetruning gait and the spinning gait to supply enough support fot the automatic gait generationmethod.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络