节点文献

低介电常数微波陶瓷材料的制备、介电性能及机理研究

Preparation, Dielectric Properties and Mechanism of Microwave Ceramic Materials with Low Dielectric Constant

【作者】 江婵

【导师】 涂伟萍;

【作者基本信息】 华南理工大学 , 化学工程, 2012, 博士

【摘要】 低介电常数、高品质因数微波介质陶瓷材料的合成及研究是近年来的研究热点,本文制备了Sm2SiO5陶瓷,Sm4(SiO43陶瓷,Nd2SiO5陶瓷,Al2O3-TiO2陶瓷,MgTiO3-CaTiO3陶瓷和(Zn,Mg)TiO3-TiO2陶瓷,并用XRD、SEM、EDS和TG-DTA等多种分析测试手段及开腔谐振测试方法,研究了这些低介陶瓷的相组成、致密度和微观结构等对材料介电性能的影响,探索介电性能的演变规律,并将(Zn,Mg)TiO3-TiO2复合陶瓷用于制备多层片式陶瓷电容器(MLCC)。1.研究以非化学计量比效应合成新型的单相Sm2SiO5低介电常数微波陶瓷。当Sm2O3/SiO2摩尔比为1:1.05,在1350℃烧结4h,可得到纯的单斜Sm2SiO5相。随着温度的升高,可以得到少量的六方Sm4(SiO43相,并且随着温度的升高,Sm2SiO5陶瓷样品的相对密度随之增加。Sm2SiO5陶瓷在1500℃下烧结后,有优良的介电性能:εr=8.5,Q×f=64878.71GHz和τf=-37.64ppm/℃。Sm2SiO5陶瓷材料有着较宽的烧成温度范围和小的负温度系数,因此可以作为优良的介电材料用于毫米波通讯装置中。2.研究以非化学计量比效应合成新型的单相Sm4(SiO43低介高频微波陶瓷。发现Sm2O3-xSiO2(1.425≤x≤1.6)在1350-1600℃下烧结四个小时,均能得到纯六方Sm4(SiO43相。当x=1.5时,样品的介电性能: εr=9.03,Q×f=17470.76GHz (12.40GHz)和τf=-24.4ppm/℃。Sm4(SiO43陶瓷材料有着很宽的烧成温度范围和较小的负温度系数。3.研究以非化学计量比效应合成新型的单相Nd2SiO5低介电常数微波陶瓷。当Nd2O3/SiO2摩尔比为1:1.05,在1450℃下烧结时,第二相六方Nd4Si3O12相消失,纯单斜Nd2SiO5相出现。随着烧温的升高,Nd2SiO5陶瓷的相对密度升高。Nd2SiO5陶瓷在1500℃下烧结,介电性能: εr=7.94,Q×f=38800GHz, τf=-53ppm/℃。高自谐振频率导致低的介电常数和低的Q×f值。Nd2SiO5陶瓷有较宽的烧成温度范围,它们有潜力应用在微波被动元器件中。4.使用新颖的水基溶胶凝胶法合成0.9Al2O3-0.1TiO2包覆性纳米颗粒,用二(2-羟基丙酸)二氢氧化二铵合钛(TALH)为钛盐水基前驱体,与传统的钛醇盐sol-gel法相比,不需要乙醇做溶剂体系。本文对其制备条件进行了优化。α-Al2O3和金红石相晶粒生长指数(n)各为2.5和4,晶粒生长活化能分别为100kJ/mol和107kJ/mol。沿着晶界扩散后形成的缝合线,纳米层通过高温自组装途径生长,其微波介电性能:εr=10.4, Q×f=18000GHz, τf=-10.8ppm/℃(在1300℃烧结)和εr=13, Q×f=32000GHz, τf=45ppm/℃(又在1100℃下退火10h)。5.采用固相法合成MgTiO3-CaTiO3复合陶瓷,加入CaTiO3用来调节MgTiO3过负的频率温度系数,加入3ZnO-B2O3可以促进体系的烧结。(a) MgTiO3-CaTiO3陶瓷随着CaTiO3掺入量的增加,体系的介电常数和温度系数随之增加,品质因数随之下降,样品的介电性能与微观结构和晶相转变有着密不可分的联系。0.97MgTiO3-0.03CaTiO3在1300℃下具有优良的微波介电性能: εr=18.23, Q×f=76529GHz (7.37GHz)和τf=-34.68ppm/°C。(b)适量的ZB掺杂0.97MgTiO3-0.03CaTiO3,在降低烧温的同时,并没有明显恶化体系的介电性能。0.97MgTiO3-0.03CaTiO3+2wt.%ZB在1225℃下具有优良的微波介电性能: εr=17.96, Q×f=79346GHz (7.47GHz)和τf=-34.93ppm/°C。6.采用固相法合成(Zn,Mg)TiO3-TiO2复合陶瓷,加入TiO2用来稳定(Zn, Mg)TiO3六方相和调节谐振频率温度系数,加入3ZnO-B2O3可以促进体系的烧结,体系遵循液相烧结机理,烧结过程中有明显的晶界运动。SEM和EDS显示,在烧结过程中,游离的(Zn, Mg)TiO3颗粒会在晶界上产生偏析甚至脱溶出来分凝在晶界上。SnO2因为能阻止晶界扩张而被用做晶粒细化剂。样品的介电性能与微观结构和晶相转变有着密不可分的联系,我们发现(Zn, Mg)TiO3-0.25TiO2+1.0wt.%3ZnO-B2O3+0.1wt.%SnO2(ZMTZBS,1000°C)呈现优良的介电性能: εr=27.7, Q×f=65494GHz (6.07GHz)和τf=-8.88ppm/°C。7.用介电性能优良的ZMTZBS陶瓷粉料成功制造了具有良好电性能的多层片式陶瓷电容器。我们发现:随着电容量增加,电容器的自谐振频率和等效串联电阻相应减少,而品质因数随着频率或电容量增加而减少。

【Abstract】 Preparation of microwave ceramic materials with low dielectric constant and highquality factor has become a research focus in recent years. In this paper, Sm2SiO5ceramics,Sm4(SiO43ceramics, Nd2SiO5ceramics, Al2O3-TiO2ceramics, MgTiO3-CaTiO3ceramicsand (Zn, Mg)TiO3-TiO2ceramics were synthesized. The phase composition, density andcrystal microstructure of ceramic materials with low dielectric constant were analyzed byXRD, SEM, EDS, TG-DTA and so on. Microwave dielectric properties were tested byHakki-Coleman opened resonator method. The relationship between microstructure andmicrowave dielectric properties was also investigated. The evolution of dielectric propertieswas discussed.(Zn,Mg)TiO3-TiO2composite ceramics were applied to manufacturemultilayer ceramic capacitors (MLCC).1. Sm2SiO5ceramics were synthesized by solid phase method. The pure monoclinicSm2SiO5phase could be obtained when Sm2O3/SiO2=1:1.05at1350℃. The hexagonalSm4(SiO43second phase occurred as temperature increased. The densification of Sm2SiO5ceramics increased with increasing temperature. The Sm2SiO5ceramics sintered at1500℃exhibited microwave dielectric properties: a dielectric constant (εr) of8.5, a quality factor Q×fof64878.71GHz and a temperature coefficient of resonant frequency (τf) of-37.64ppm/℃.Sm2SiO5ceramics had a wide temperature region and small negative τfvalue. They arepromising candidate materials for millimeter-wave devices.2. Sm4(SiO43ceramics were synthesized by solid phase method. The pure hexagonalSm4(SiO43phase could be obtained when Sm2O3/SiO2=1:1.425-1.6at1350℃-1600℃for4h. when Sm2O3/SiO2=1:1.5at1550℃, Sm4(SiO43ceramics exhibited microwave dielectricproperties: a dielectric constant (εr) of9.03, a quality factor Q×f of17470.76GHz (12.40GHz)and a temperature coefficient of resonant frequency (τf) of-24.4ppm/℃. Sm4(SiO43ceramics had a wide temperature region and small negative τfvalue.3. Nd2SiO5ceramics were synthesized by solid phase method. The hexagonal Nd4Si3O12second phase disappeared and the pure monoclinic Nd2SiO5phase could be obtained when themolar ratio of Nd2O3/SiO2was1:1.05at1450℃. The relative density of Nd2SiO5ceramicsincreased with increasing temperature. The Nd2SiO5ceramics sintered at1500℃exhibitedmicrowave dielectric properties: a dielectric constant (εr) of7.94, a quality factor (Q×f) of38800GHz and a temperature coefficient of resonant frequency (τf) of-53ppm/℃. Highresonant frequency led to a low dielectric constant and low Q×f value. Nd2SiO5ceramics had a wide temperature region. They are promising candidate materials for microwave passivecomponents.4. The0.9Al2O3-0.1TiO2nano-particles were synthesized by novel water-based sol-gelmethod. Compared with the traditional sol-gel method using titanium alcohol salt, this methoddid not need ethanol solvent system using TALH as titanium salt water-based precursor body.The preparation condition of0.9Al2O3-0.1TiO2nano-particles was optimized. The graingrowth exponent (n) values were2.5and4for α-Al2O3and rutile, respectively. The activationenergies of grain growth were estimated to be100and107kJ/mol for α-Al2O3and rutile.Along suture line emerging after grain boundary diffusion, the nano-sheets of Al2O3-TiO2grew through high temperature self-assembly way. The microwave dielectric behaviors of0.9Al2O3-0.1TiO2ceramics were εr=10.4, Q×f=18000GHz, τf=-10.8ppm/℃(as preparedat1300℃), and εr=13, Q×f=32000GHz, τf=45ppm/℃(post-annealed at1100℃for10h).5. MgTiO3-CaTiO3composite ceramics have been prepared via the solid-phase synthesismethod. CaTiO3was employed to tone negative temperature coefficient of resonant frequency(τf) of MgTiO3,3ZnO-B2O3was effective to promote sintering.(a) With the content of CaTiO3increasing, dielectric constant and temperature coefficientof MgTiO3-CaTiO3ceramics increased, and quality factor reduced. The dielectric propertiesdepended on microstructure and grain phase transition closely. Microwave dielectricbehaviors of0.97MgTiO3-0.03CaTiO3ceramics were: εr=18.23, Q×f=76529GHz (7.37GHz), τf=-34.68ppm/°C (at1300℃).(b) Right amount of ZB doping0.97MgTiO3-0.03CaTiO3, led to the decrease in thesintering temperature, and the dielectric properties had no significant deterioration.Microwave dielectric behaviors of0.97MgTiO3-0.03CaTiO3+2wt.%ZB ceramics were: εr=17.96, Q×f=79346GHz (7.47GHz), τf=-34.93ppm/°C (at1225℃).6.(Zn, Mg)TiO3-xTiO2composite ceramics were prepared via solid-phase synthesismethod. TiO2was employed to tone temperature coefficient of resonant frequency (τf) andstabilized hexagonal (Zn, Mg)TiO3phase.3ZnO-B2O3was effective to promote sintering. Themovement of grain boundary was obvious because of the liquid phase sintering. SEM andEDS showed that segregation and precipitation of dissociative (Zn, Mg)TiO3grains occurredat grain boundary during sintering. SnO2was used as inhibitor to prevent the grain boundaryfrom moving. The dielectric behaviors of specimen strongly depended on structural transitionand microstructure. We found that1.0wt.%3ZnO-B2O3doped (Zn, Mg)TiO3-0.25TiO2ceramics with0.1wt.%SnO2additive displayed excellent dielectric properties (at1000°C): εr =27.7, Q×f=65494GHz (at6.07GHz) and τf=-8.88ppm/°C.7. The above-mentioned material was applied successfully to make multilayer ceramiccapacitors (MLCC), which exhibited excellent electrical properties. The self-resonancefrequency (SRF) and equivalent series resistance (ESR) of capacitor decreased withcapacitance increasing, and the quality factor (Q) of capacitor reduced as frequency orcapacity increased.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络