节点文献

3.0T MR fast cine-PC法对胸椎管脑脊液流体动力学定量研究

Quantitative Evaluation of Cerebrospine Fluid Hydrodynamics in Thoracic Spine with3.0T MR Fast Cine-PC

【作者】 闫乐卡

【导师】 刘怀军;

【作者基本信息】 河北医科大学 , 神经病学, 2012, 博士

【摘要】 第一部分3.0T MRI快速电影相位对比法流体定量测量的实验研究目的:利用流体模型评价磁共振快速电影相位对比法对流体测量的准确性及可行性,作为进一步临床研究的实验基础。方法:流体模型主要包括高压注射器一台,内径4.75mm的塑胶管一根,以及0.9%生理盐水。在塑料管的一端注入0.9%生理盐水,开始使用3.0T磁共振机行快速电影相位对比法扫描。分别改变注入流量(0.1ml/s、0.2ml/s、0.3ml/s、0.4ml/s、0.5ml/s、0.6ml/s、0.7ml/s、0.8ml/s、0.9ml/s)、流速编码(5cm/s、10cm/s、15cm/s、20cm/s、25cm/s、30cm/s、35cm/s、40cm/s)、方向(头-尾、尾-头)、垂直角度(垂直200、300、450)、水平角度(水平200、300、450)。通过后处理测量得到流速值并与实际值比较,对所有结果进行统计学分析。结果:注入流量分别为0.1ml/s、0.2ml/s、0.3ml/s、0.4ml/s、0.5ml/s、0.6ml/s、0.7ml/s、0.8ml/s、0.9ml/s时,其对应的测量值分别与相应的真实值比较没有差异(t=1.072,p=0.315);设置流速编码分别为5cm/s、10cm/s、15cm/s、20cm/s、25cm/s、30cm/s、35cm/s、40cm/s,注入流量为0.9ml/s时分别对管腔内流速进行测定,发现流速编码为5cm/s时,图像出现混淆伪影,其余的图像未发现伪影。其他的流速编码测量值与真实值比较没有差异(t=0.351,p=0.739);垂直及水平方向不同的角度(200、300、450),其流速测量值与真实流速(t=1.814,p=0.121)及0角度(t=0.456,p=0.673)比较没有差异。结论:3.0T MRI快速电影相位对比法是一种准确的流体定量测量技术,可以为各种流体的定量研究提供可靠的实验依据。第二部分3.0T MR fast cine-PC法对胸椎管内脑脊液流动扫描参数的优化目的:对3.0T MR fast cine-PC法胸椎管内脑脊液流动扫描参数进行优化,以得到高质量的胸椎管脑脊液流动图像,使进一步的临床研究具有可行性。方法:正常志愿者30名,年龄21—55岁,平均年龄36.16±13.42岁。其中男性12例,女性18例。采用3.0T MR仪进行检查获得常规矢状位FSE T2WI后,于T6-7层面定位行胸椎管脑脊液fast cine-PC法扫描。在其他参数不变的情况下,分别改变流速编码(设置为5cm/s、10cm/s、15cm/s、20cm/s)、频率编码方向[右/左(R/L)、前/后(A/P)]、FOV(18cm、26cm、34cm)、矩阵(384×256、256×192)、NEX(1次、2次)等参数,观察成像效果。结果:流速编码采用5、10、15、20cm/s时,图像质量为优、良、差者分别为0、16、14名,19、11、0名,28、2、0名,30、0、0名,差异有统计学意义(χ2=8.65,p=0.02);频率编码方向分别为A/P、R/L时,图像质量为优、差者分别为27、3名,10、20名,差异有统计学意义(Z=-4.12,p<0.001);FOV分别为18cm、26cm、34cm时,图像质量为优、良、差者分别为0、12、18名,11、18、1名,29、1、0名,差异有统计学意义(χ2=8.77,p=0.01);矩阵分别为384×256、256×192时,优、良图像分别为29、1名,3、27名,差异有统计学意义(Z=-4.81,p<0.001);NEX分别为1次及2次时,优、良图像分别为6、24名,30、0名,差异有统计学意义(Z=-4.89,p<0.001)。结论:通过优化3.0T MR fast cine-PC扫描序列的参数,可以得到高质量的胸椎管脑脊液流动图像,并且能进行准确定量评价。第三部分正常胸椎管脑脊液流动定量研究目的:使用MR fast cine PC方法定量分析正常成年人胸椎管内脑脊液流动方式与规律,探讨影响其流动的相关解剖因素,提供正常成年人的胸椎管脑脊液流动信息,为临床疾病的诊断及预后判断提供依据。方法:选择没有任何椎体及脊髓病变的志愿者92例,年龄21-72岁,平均年龄45.09±14.79岁。本研究男性40例,女性52例.每个志愿者都进行fast cine-PC序列的扫描,扫描层面定位于胸2-3、胸4-5、胸6-7、胸8-9、胸10-11。将志愿者按年龄分为5组,其中20-29岁18例、30-39岁18例、40-49岁17例、50-59岁19例、≥60岁20例。比较各年龄组之间胸椎管脑脊液尾向峰值流速、头向峰值流速、尾向峰值流量、头向峰值流量、尾向平均流速、头向平均流速、尾向平均流量、头向平均流量各变量有无差异;将志愿者按性别分为男、女两组,两组间比较胸椎管脑脊液的流速及流量;比较胸2-3、胸4-5、胸6-7、胸8-9、胸10-11各椎间盘层面的胸椎管脑脊液流动有无差异;比较胸椎管脑脊液尾向流动的流速、流量和头向流动有无差异;观察胸椎管脑脊液峰值流速、流量及平均流速、流量与相应层面脊髓面积、脊髓前后径、蛛网膜下腔面积、蛛网膜下腔前后径之间有无相关性。把胸椎管近环形的蛛网膜下腔人为的分为腹侧、背侧、左、右四部分,分别测量每个椎间盘层面在一个心动周期中四部分脑脊液尾向、头向的峰值流速、平均流速,比较腹侧、背侧、左、右四部分流速在一个心动周期中是否有差异;观察胸椎管脑脊液腹侧、背侧、左、右四部分流速与相应椎管蛛网膜下腔前后径及脊髓前后径之间的关系。结果:≥60岁年龄组的尾向峰值流速与20-29岁、30-39岁、40-49岁比较减小(p=0.029,p=0.022,p=0.020);≥60岁头向峰值流速与20-29岁、30-39岁、40-49岁、50-59岁间比较小于以上四组,且具有统计学差异;其p值分别为0.009、0.016、0.014、0.012。其余四组间比较无差异;尾向峰值流量、头向峰值流量、尾向平均流速、头向平均流速其测量结果≥60岁组虽然流速或流量小于其余四组,但无统计学差异(p>0.05);尾向平均流量、头向平均流量五组间比较无明显差异(p>0.05)。男、女两组各变量间比较均无统计学差异(p>0.05)。T10-11椎间盘层面尾向峰值流速、尾向峰值流量、尾向平均流速、尾向平均流量小于T2-3、T4-5、T6-7三个层面,其p值分别为0.007、0.008、0.049;0.004、0.006、0.025;0.003、0.004、0.026;0.001、0.005、0.041。头向峰值流速、头向峰值流量、头向平均流速、头向平均流量的五个椎间盘层面间流动无差异(p>0.05)。胸椎管脑脊液尾向的流速、流量均大于头向的流速及流量,其比较具有明显的统计学差异(p<0.05)。胸椎管脑脊液尾向平均流量、头向平均流量都与蛛网膜下腔面积具有正相关关系。胸椎管脑脊液流速及流量与脊髓面积、蛛网膜下腔前径及后径间没有相关性。头向峰值流速、头向峰值流量与脊髓前后径呈正相关性。而尾向峰值流量、尾向平均流量与脊髓前后径呈负相关。胸椎管蛛网膜下腔腹侧、背侧、左、右比较发现腹侧的头向及尾向的平均流速是最大的(p<0.05)。背侧的头向及尾向的平均流速及峰值流速是最小的,但统计学分析发现背侧尾向及头向的峰值流速只与右侧有差异。左右两侧脑脊液流速及流量较稳定没有差异(p>0.05)。腹侧尾向峰值流速、平均流速与前径呈正相关,与后径呈负相关;背侧尾向峰值流速、平均流速与前径呈负相关,与后径呈正相关;胸椎管内左右两侧的脑脊液流动与这些解剖结构没有任何相关性。结论:MRI可以定量评价正常成年人胸椎管脑脊液流动,并且该流动与年龄具有相关性:≥60岁老年人其胸椎管脑脊液流动减慢;胸椎管脑脊液流动不受性别的影响;胸椎管脑脊液流动头-尾的流动呈减慢趋势;呈双向波动的脑脊液其尾向的流动大于头向的;胸椎管腹侧、背侧、左、右四部分流动速度存在差异,腹侧流动较快,背侧流动较慢,左右两部分流动较稳定;胸椎管脑脊液流动受椎管蛛网膜下腔面积及前后径大小的影响。第四部分呼吸对胸椎管脑脊液流动的影响目的:定量评价不同呼吸状态下胸椎管脑脊液的流速、流量及总入颅血流量的变化,观察胸椎管脑脊液流速及流量变化与总入颅血流量变化的相关性。最终得到呼吸变化与入颅总血流量及胸椎管脑脊液流动的相关关系。方法:选择没有任何椎体及脊髓病变的志愿者32例,年龄23—65岁,平均年龄41.38±12.74岁。其中男性15例,女性17例。首先行胸椎管矢状位T2WI FSE及颈部矢状位T2WI FSE序列扫描,采用fast cine-PC序列于颈2-3水平在不同呼吸状态下(平静、吸气后屏气、呼气后屏气)对双侧颈内动脉及椎动脉进行扫描。分别比较每根血管在三种不同呼吸状态下的流速值及流量值有无差异;比较双侧颈内动脉之间、双侧椎动脉之间的平均流量有无差异;计算不同呼吸状态下总的入颅血流量;测量T6-7水平不同呼吸状态下(平静、吸气后屏气、呼气后屏气)胸椎管脑脊液的流动,得到每个心动周期的尾向平均流速、头向平均流速、尾向平均流量、头向平均流量、尾向峰值流速、头向峰值流速、尾向峰值流量、头向峰值流量。分别比较平静、吸气、呼气三种状态下脑脊液流速及流量有无差异;比较双侧颈内动脉、椎动脉的吸气后屏气与平静状态,呼气后屏气与平静状态的平均流量的差与胸椎管脑脊液平均流量的差之间有无相关性。结果:双侧颈内动脉及椎动脉在呼气后屏气和吸气后屏气状态下的流速及血流量明显高于平静状态(p<0.05)。双侧颈内动脉之间的平均流量、双侧椎动脉之间平均血流量在平静、吸气及呼气状态下均没有差异(p>0.05);平静状态、吸气后屏气、呼气后屏气平均总入颅血流量分别为797.89ml/min,972.15ml/min,985.96ml/min。吸气与呼气后屏气状态较平静状态下的平均总入颅血流量明显增加(p<0.05)。胸椎管脑脊液的流速及流量吸气后屏气及呼气后屏气两种状态均较平静状态为高,但头向峰值流速及头向峰值流量没有统计学意义(p>0.05)。在不同呼吸状态下胸椎管脑脊液的流量变化与双侧颈内动脉及椎动脉的变化具有相关性,吸气与平静状态下动脉平均流量的差与脑脊液在此两种状态的差的相关性比较:r=0.504,p=0.039;呼气与平静状态下动脉平均流量的差与脑脊液在此两种状态的差的相关性比较:r=0.389,p=0.042。结论:1)在吸气后屏气及呼气后屏气时双侧颈内动脉及椎动脉流速及流量较平静状态下增大,表明总入颅血流量增大;2)在吸气后屏气及呼气后屏气时胸椎管脑脊液头向及尾向的流速及流量较平静状态下增大;3)上述两种呼吸状态时胸椎管脑脊液平均流量变化与脑总血流量的增加相关。第五部分体位对胸椎管脑脊液流动的影响目的:使用fast cine-PC法探讨不同体位对胸椎管内脑脊液流动的影响,以及腹压改变与胸椎管脑脊液流动的关系。方法:选择没有任何椎体及脊髓病变的志愿者31例,年龄21-65岁,平均年龄39.5±12.6岁。其中男性13例,女性18例。志愿者在仰卧位首先进行矢状位T2WI FSE序列扫描,于胸6-7椎间盘水平定位行fast cine-PC法图像采集。仰卧位扫描完毕后,在保持位置不变的情况下,使用医用腹带对志愿者的腹部进行加压。再次于胸6-7椎间盘水平定位行fast cine-PC法扫描。志愿者在仰卧位扫描完毕后,休息5分钟进行俯卧位扫描。首先进行俯卧位矢状T2WI FSE序列扫描,于胸6-7椎间盘水平定位行fast cine-PC法图像采集。上述扫描图像经后处理得到胸椎管脑脊液仰卧位、腹带加压及俯卧位向下峰值流速、向上峰值流速、向下峰值流量、向上峰值流量、向下平均流速、向上平均流速、向下平均流量、向上平均流量。比较仰卧位与俯卧位之间,仰卧位与腹带加压之间各参数有无差异。结果:向下峰值流速、向下峰值流量、向下平均流速、向下平均流量这四个参数仰卧位大于俯卧位,而具有统计学意义的只有前两个参数(p<0.05)。这也表明在俯卧位时向下的流动减慢。向上峰值流速、向上峰值流量、向上平均流速、向上平均流量四个参数均没有统计学的差异(p>0.05)。仰卧位与腹带加压胸椎管脑脊液流动的向下峰值流速、向上峰值流速、向下峰值流量、向上峰值流量、向下平均流速、向上平均流速、向下平均流量、向上平均流量参数的比较中发现腹带加压后脑脊液的流速及流量较仰卧位增大,但没有统计学差异(p>0.05)。结论:体位对胸椎管内脑脊液流动动力的影响可以应用MRI进行定量研究;结果发现胸椎管内脑脊液向下的流速、流量仰卧位高于俯卧位,该变化与腹压增高无关。第六部分颈椎病病人胸椎管脑脊液流动特点目的:定量评价颈椎病病人胸椎管脑脊液流速及流量的变化,观察颈椎病严重程度与胸椎管脑脊液流动的相关关系,为颈椎病临床诊断及预后判断提供影像学的依据。方法:颈椎病病人91例,年龄28岁-72岁,平均年龄45.21±14.58岁。其中男40例,女51例。于胸6-7水平行胸椎管脑脊液fast cine-PC法扫描。将颈椎病分为3级:轻度、中度、重度。轻度指椎管内硬膜囊受压,但矢状位T2观察蛛网膜下腔存在;中度指矢状位T2图像蛛网膜下腔消失,但并没有脊髓受压;重度指矢状位T2图像蛛网膜下腔消失合并脊髓受压。其中轻度23例,中度30例,重度38例。比较上述各级颈椎病患者其胸椎管脑脊液流速及流量值与正常志愿者T6-7水平脑脊液流动之间有无差异。临床评分系统选用常规颈椎病的Japan OrthopedicAssociation (JOA)进行评价。对每个患者进行JOA评分,比较该评分与各级脑脊液流速之间有无相关性。对重度颈椎病患者,按照脊髓有无MRI矢状位T2高信号分为变性组及非变性组,变性组15例,非变性组23例。比较其胸椎管流速及流量有无差异。结果:轻度颈椎病的胸椎管脑脊液流速及流量与正常志愿者之间并没有差异(p>0.05);中度颈椎病胸椎管脑脊液的流速及流量低于正常志愿者,并且具有统计学差异(p<0.05);重度颈椎病胸椎管脑脊液的流速及流量低于正常志愿者,并且具有统计学差异(p<0.05)。颈椎病三者之间比较其向下平均流速、向上平均流速、向下平均流量、向上平均流量、向下峰值流速、向上峰值流速、向下峰值流量、向上峰值流量,发现轻度与中度之间p<0.05,中度与重度之间p<0.05,轻度与重度之间p<0.05。轻、中、重度颈椎病其JOA评分分别为13.35±1.36、12.41±1.65、10.14±1.95。JOA评分与轻度、中度、重度颈椎病的脑脊液流速及流量呈明显相关关系。重度颈椎病的患者其脊髓出现T2高信号者即变性与未变性者胸椎管脑脊液流速及流量比较没有统计学差异,但是出现脊髓变性的患者的胸椎管脑脊液流速及流量较无脊髓变性者稍增大。结论:1)颈椎病病人根据矢状位T2图像蛛网膜下腔存在与否及脊髓受压与否来分级具有简单易辨的特点,对于临床迅速判断病情提供影像学帮助;2)颈椎病病人其胸椎管脑脊液流动与疾病的严重程度相关,该程度包括MRI表现及临床JOA评分;3)颈椎病病人脊髓受压出现T2高信号变性时,其胸椎管脑脊液流动与非脊髓变性者之间不存在统计学差异。

【Abstract】 PartⅠ The experimental study of fluid quantitative measurement using3.0TMRI fast cine phase contrast sequenceObjective:To evaluate the feasibility and accuracy of MR fast cinephase-contrast technique in fluid flow quantification by establishing flowphantom.Methods:The phantom consisted of a plastic tube with diameter of4.75mm,a high pressure injector,0.9%physiological saline.0.9%physiological saline was injected into the plastic tube, and fast cine phasecontrast sequence was performed by using3.0T MRI.The scanning at differentflow rates(0.1ml/s,0.2ml/s,0.3ml/s,0.4ml/s,0.5ml/s,0.6ml/s,0.7ml/s,0.8ml/s,0.9ml/s), different velocity encoding(5cm/s,10cm/s,15cm/s,20cm/s,25cm/s,30cm/s,35cm/s,40cm/s),different directions of flow(caudal–cranial, cranial-caudal), different vertical angles(200,300,450), horizontalangles(200,300,450)was measured.After postprocessing, measured values werecompared with actual values by satistical analysis.Results:There was no statistical difference between measured values andactual values at different flow rate(0.1ml/s,0.2ml/s,0.3ml/s,0.4ml/s,0.5ml/s,0.6ml/s,0.7ml/s,0.8ml/s,0.9ml/s)(t=1.072,p=0.315); The aliasingartifacts appeared at the velocity encoding of5cm/s.In other velocityencoding aliasing artifacts did not appear. There was no statistical differencebetween measured values and actual values at different velocity encoding(t=0.351,p=0.739);No statistical difference between Measured values andactual values(t=1.814,p=0.121)at different angle, measured values and0angle(t=0.456, p=0.673).Conclusions:3.0T MRI fast cine phase contrast sequence allows accuratemeasurement of flow velocity with fluid flow phantom, and provides reliable experimental evidence for the quantitative study of anybfluid flow.PartⅡ Optimal Parameters for Imaging Cerebrospine Fluid Flow in thoracicspine with3.0T MR Fast Cine phase contrast sequenceObjective: To optimize imaging parameters of cerebrospine fluid flow inthoracic spine with3.0T MR fast cine phase contrast.Methods:30healthy individuals (12men,18women) aged between21and55years(mean36.16±13.42years) were enrolled for the MRImeasurement of spine cerebrospine fluid flow. Fast cine phase contrastsequence was performed located at T6-7Level. The imaging effect wasexplored with different parameters, including velocity encoding(5cm/s,10cm/s,15cm/s,20cm/s),frequency encoding direction(R/L, A/P), FOV(18cm,26cm,34cm), matrix(384×256,256×192)and NEX(1,2),respectively.Results: The number of excellent, good and poor imaging in the velocitycodes of5cm/s,10cm/s,15cm/s,20cm/s were0,14,16;19,11,0;28,2,0;30,0,0; respectively(χ2=8.65,p=0.02). The number of excellent, good andpoor imaging with different FOV(18cm,26cm,34cm) were0,18,12;11,18,1and29,1,0(χ2=8.77,p=0.01). The number of excellent and poorimaging with different frequency encoding direction(R/L, A/P) were27,3and10,20, respectively(Z=-4.12,p<0.001). The number of excellent andgood imaging with different matrix(384×256,256×192)were29,1and3,27(Z=-4.81,p<0.001); with different NEX(1time,2times)were6,24and30,0, respectively(Z=-4.89,p<0.001). The optimal parameters wereobtained and they were velocity encoding10cm/s, frequency encodingdirection A/P, FOV26cm, matrix256×192and NEX2times,respectively.Conclusions: The better images and accurate quantitative assessment ofthoracic spine cerebrospine fluid flow are performed by optimizing theparameters of3.0T MR fast cine phase contrast sequence.PartⅢ Quantitatively evaluate cerebrospine fluid flow in the thoracic spineObjectives: The aim of this study was to quantitatively evaluatecerebrospine fluid flow in the thoracic spine by using fast cine phase-contrast magnetic resonance imaging (MRI) technique,and to explore the influencefactor, flow characteristics of cerebrospine fluid.Methods:92healthy individuals (40men,52women) aged between21and72years(mean45.09±14.79years) were enrolled for the MRImeasurement of thoracic spine cerebrospine fluid flow. Fast cinephase-contrast sequences were acquired at the level of T2-3, T4-5, T6-7, T8-9,T10-11. At these levels, caudal peak flow velocity,cranial peak flow velocity,caudal peak volume flow,cranial peak volume flow,caudal mean flowvelocity,cranial mean flow velocity,caudal mean volume flow,cranial meanvolume flow were studied.Subjects were divided into five age groups:20-29years(18cases),30-39years(18cases),40-49years(17cases),50-59years(19cases), and≥60years(20cases).The volunteers were dividedinto male and female groups. The values of cerebrospine fluid flow among allage groups, between male group and female group, among the level of T2-3,T4-5, T6-7, T8-9, T10-11, between cranial and caudal directions werecompared,respectively.We observed the correlation between the thoracicspine cerebrospine fluid flow and the corresponding level of the spine cordarea, spine anteroposterior diameter, subarachnoid anteroposteriordiameter.The thoracic spine subarachnoid space was artificially divided intofour parts: Ventral, dorsal,left, right and they were compared. The revelanceof cerebrospine fluid flow in four parts and subarachnoid space,spineanteroposterior diameter were studied.Results: There was a statistical significance in cerebrospine fluid caudalpeak flow velocity between the age group of≥60years and the other threeage group(sp=0.029,p=0.022,p=0.020). Cranial peak flow velocity of≥60years was lower than that of the other agegroups(p=0.009,p=0.016,p=0.014,p=0.012). In≥60years group caudal peakvolume flow,cranial peak volume flow,caudal mean flow velocity,cranialmean flow velocity of cerebrospine fluid were lower than in the other agegroups,but there was no statistical significance(p>0.05). Statistical differenceswas not detected in flow parameters between male and female(p>0.05). There was a statistical difference in cerebrospine fluid caudal peak flow velocity,caudal peak volume flow, caudal mean flow velocity, caudal mean volumeflow between the level of T10-11and T2-3,T4-5,T6-7,p volues were0.007,0.008,0.049;0.004,0.006,0.025;0.003,0.004,0.026;0.001,0.005,0.041,respectively. There was no statistical difference in cerebrospine fluidcranial peak flow velocity, cranial peak volume flow, cranial mean flowvelocity, cranial mean volume flow between the level of T10-11andT2-3,T4-5,T6-7(p>0.05).Cerebrospine fluid caudal flow was higher thancranial flow in all individuals. Caudal and cranial mean volume flow showed apositive correlation with subarachnoid space area. There was a positivecorrelation between cranial peak flow velocity,cranial peak volume flow andspine cord anteroposterior diameter, a negative correlation between caudalpeak volume flow and spine cord anteroposterior diameter.In segmentmeasurement, caudal and cranial mean flow velocity of ventral was the largest,dorsal was the lowest.No statistical difference was detected between left andright(p>0.05). There was a positive correlation between caudal peak flowvelocity,volume flow of ventral and subarachnoid space anterior diameter, anegative correlation with posterior diameter, but dorsal was reverse.Conclusions: Thoracic spine cerebrospine fluid flow of normal adultcan be quantitatively evaluated by MRI,and age is a effective factor:cerebrospine fluid flow in≥60years is lower than the other aged groups.Thoracic spine CSF flow is not affected by gender. Thoracic spinecerebrospine fluid flow in below level of intervertebral disc is lower. Caudalcerebrospine fluid flow is higher than cranial.There is a difference betweenfour segments of thoracic spine canal; ventral is the largest, dorsal is thelowest,left and right sides are stable. Thoracic spine cerebrospine fluid flow isaffected by the spine subarachnoid space area and the anteroposteriordiameter.PartⅣ The influence of respiration on cerebrospine fluid flow in thoracicspineObjectives:To quantitatively evaluate the changes of cerebrospine fluid flow velocity and volume flow of thoracic spine and the total cerebral bloodflow in breath-holding after inspiration or expiration.To observe thecorrelation of cerebrospine fluid flow velocity and volume flow of thoracicspine and the total cerebral blood flow.Methods:32healthy individuals (15men,17women) aged between23and65years(mean41.38±12.74years) were enrolled for the MRImeasurement of spine CSF flow. Sagittal T2-weighted FSE images in thoracicspine and cervical spine were acquired first. To quantify bilateral internalcarotid artery and vertebral artery flow,fast cine-phase contrast sequence wasacquired located in C2-3level under free breathing, breath-holding afterinspiration, breath-holding after expiration. Flow velocity and volume flow ofeach artery among three states of respiration status werecompared,respectively.We evaluated the agreement between bilateral internalcarotid artery flow, bilateral vertebral artery flow,and calculated the totalcerebral blood flow,respectively.We measured the cerebrospine fluid flowlocated in T6-7level under free breathing, breath-holding after inspiration,breath-holding after expiration and obtained the caudal peak flow velocity,cranial peak flow velocity,caudal peak volume flow,cranial peak volumeflow,caudal mean flow velocity,cranial mean flow velocity,caudal meanvolume flow,cranial mean volume flow in a cardiac cycle. The relevance offlow velocity and volume flow of cerebrospine fluid and each artery werestudied.Results: In bilateral internal carotid artery and vertebral artery flowvelocity and volume flow under breath-holding after inspiration, breath-holding after expiration were significantly higher than that under freebreathing(p<0.05).There was no difference among three respiration states ofbilateral internal carotid artery mean volume flow and bilateral vertebral arterymean volume flow(p>0.05). The total cerebral blood flow under freebreathing, breath-holding after inspiration, breath-holding after expiration was797.89ml/min,972.15ml/min,985.96ml/min,respectively. The total cerebralblood flow under breath-holding after inspiration, breath-holding after expiration was significant higher than free breathing(p<0.05). Flow velocityand volume flow of cerebrospine fluid under breath-holding after inspiration,breath-holding after expiration were significantly higher than that under freebreathing(p<0.05),but no statistical significance in cranial peak flowvelocity, cranial peak volume flow(p>0.05). There was the correlationbetween total cerebral blood flow and cerebrospine fluid in the mean volumeflow of breath-holding after inspiration and free breathing (r=0.504,p=0.039),breath-holding after expiration and free breathing(r=0.389,p=0.042).Conclusions:1) Flow velocity and volume flow in bilateral internalcarotid artery and vertebral artery under breath-holding after inspiration,breath-holding after expiration are significantly higher than that under freebreathing, which demonstrates that the total cerebral blood flow increases;2)Flow velocity and volume flow of cerebrospine fluid under breath-holdingafter inspiration, breath-holding after expiration are significantly higher thanthat under free breathing;3) There is correlation between total cerebral bloodflow and cerebrospine fluid in the mean volume flow.PartⅤ The effect of posture on cerebrospine fluid flow in thoracic spineObjective: To investigate the influence of posture on cerebrospine fluidflow in thoracic spine by using fast cine phase contrast MRI.Methods:31healthy individuals (13men,18women) aged between21and65years(mean39.5±12.6years) were enrolled for the MRI measurementof spine CSF flow. Sagittal T2-weighted FSE images of Supine position inthoracic spine were acquired first. Fast cine-phase contrast sequence wasscanned located in T6-7level. After supine scanning, rescanning wasperformed with cummerbund.After five minutes, the prone position imagingwere acquired located in T6-7level. We obtained the values of cerebrospinefluid flow with different posture: caudal peak flow velocity, cranial peak flowvelocity, caudal peak volume flow,cranial peak volume flow,caudal meanflow velocity,cranial mean flow velocity,caudal mean volume flow,cranialmean volume flow. Cerebrospine fluid flow velocity and volume flowbetween supine position and prone position, supine position and cummerbund were compared.Results: Caudal peak flow velocity, caudal peak volume flow, caudalmean flow velocity, caudal mean volume flow in supine position were largerthan in prone position,and there was statistical significance between twoformers(p<0.05). There were no statistical significance between supineposition and prone position in cranial peak flow velocity, cranial peak volumeflow, cranial mean flow velocity, cranial mean volume flow.(p>0.05). Thedifference was not detected between cummerbund and supine position incaudal peak flow velocity, cranial peak flow velocity, caudal peak volumeflow,cranial peak volume flow,caudal mean flow velocity,cranial mean flowvelocity,caudal mean volume flow,cranial mean volume flow.(p>0.05).Conclusion: The effect of posture on cerebrospine fluid flow in thoracicspine can be quantified by MRI. Caudal cerebrospine fluid flow velocity andvolume flow in supine position are larger than in prone position. Howeverthere is no relation with cummerbund.PartⅥ Characteristics of cerebrospine fluid flow of thoracic spine in patientswith cervical spondylosisObjective: To quantitatively evaluate cerebrospine fluid flow velocityand flow volume of thoracic spine in patients with cervical spondylosis and toobserve the correlation between the severity of cervical spondylosis andcerebrospine fluid flow velocity and flow volume of thoracic spine.Methods: A total of91patients with cervical spondylosis were studied,40men and51women, and the mean age was45.21±14.58years (range,28–72years). All patients underwent fast cine phase contrast MRI at T6-7level. The degree of cervical spondylosis was rated as low-, intermediate-, orhigh-grade. Low-grade was defined as involving no effacement of thesubarachnoid space, intermediate-grade as involving effacement of this space,and high-grade as involving effacement of this space, together withcompressive myelopathy.23cases of Low grade, intermediate-grade30cases,high-grade38cases.Flow velocity and flow volume were compared betweenpatient of cervical spondylosis and normal volunteers. Clinical scoring system used the Japanese Orthopedic Association (JOA) score.The correction of JOAscore and The severity of cervical spondylosis were evaluated. According tothe increased signal intensity (ISI) on T2WI, the patients of high-grade weredivided into the group with or without ISI and correlated them in cerebrospinefluid flow velocity and flow volume of thoracic spine.Results: There was no difference between low-grade patients and normalvolunteers(p>0.05); Significant difference not only betweenintermediate-grade patients and normal volunteers (p<0.05),but also betweenwas high-grade patients and normal volunteers. There was significantdifference in caudal peak flow velocity,cranial peak flow velocity,caudalpeak volume flow,cranial peak volume flow,caudal mean flow velocity,cranial mean flow velocity,caudal mean volume flow,cranial mean volumeflow among the three groups, high-Grade patients had a lower cerebrospinefluid flow velocity and flow volume of thoracic spine(p<0.05).The mean JOAscore in patients of low-, intermediate-, and high-grade were13.35±1.36,12.41±1.65,10.14±1.95, respectively. A high correlation between theJapanese Orthopedic Association score and the cerebrospine fluid flowvelocity and flow volume in different degree patients was demonstrated.Cerebrospine fluid flow velocity and flow volume of high-grade patients withISI were greater,but there was no statistical significance.Conclusions:1)According to presence or absence of subarachnoid andspine cord compression or not on the sagittal T2images, the degree of cervicalspondylosis is rated,which is helpful for clinicians.2)The relevance of theseverity degree in cervical spondylosis and the Japanese OrthopedicAssociation score, cerebrospine fluid flow velocity and flow volume ofthoracic spine are showed.3) There is no statistical difference betweenhigh-grade patients with and without ISI.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络