节点文献

内燃—直线发电集成动力系统储能装置的研究

Research on Energy Storage System of Internal Combustion-Linear Generator Integrated Power System

【作者】 任桂周

【导师】 常思勤;

【作者基本信息】 南京理工大学 , 车辆工程, 2011, 博士

【摘要】 内燃-直线发电集成动力系统储能装置的研究是内燃-直线发电集成动力系统应用的关键技术之一,内燃-直线发电集成动力系统是主要由四冲程自由活塞内燃机、永磁直线电机、储能装置以及控制单元等构成的新型动力系统,可用于电动混合动力汽车取代传统内燃机,实现清洁高效利用能源。储能装置的最大特点是能够实现短时间、大电流、感应电动势大范围变化条件下的储能以及电能的高效、双向流动,且响应快速准确。本文主要以内燃-直线发电集成动力系统储能装置为研究对象,依托国家高技术研究发展计划(863计划)“内燃-直线发电集成动力系统”(项目号:2006AA05Z236)和国家自然科学基金项目“内燃-直线发电集成动力系统中的发动机热力学分析与优化”(项目号:50876043),对内燃-直线发电集成动力系统储能装置的结构和参数设计、模型建立、能量流控制策略、实验验证及扩展应用等方面开展了系统深入的研究。根据内燃-直线发电集成动力系统储能装置的工作要求,以高效性和实用性为指导原则,对内燃-直线发电集成动力系统储能装置进行了研究、设计和开发,提出了一种新型储能装置及其控制方法,满足电能量双向流动的内燃-直线发电集成动力系统中高效率的能量变换和存储要求。所设计的储能装置采用新颖的超级电容器组串并联切换技术,与优化设计的双向DC-DC功率变换器(Bi-directional DC-DC power converter, BDPC)结合使用,实现了低电压值等级电源供电的可变电压系统的设计,在理论分析的基础上进行了仿真和实验研究,仿真与实验结果验证了设计的正确性和有效性。在对内燃-直线发电集成动力系统储能装置各组成部分进行分析、设计的基础上,建立了由蓄电池组和超级电容器组组成的混合电源模型、BDPC模型、H桥直流PWM变换器模型、永磁直线电机模型和控制器模型,并给出了整个储能装置的仿真模型,仿真结果证明了所建模型的正确性,能够满足储能装置实时控制的精度要求和能量流效率要求。能量流控制策略的设计是内燃-直线发电集成动力系统储能装置研究的关键环节,能量流控制策略是影响能量流效率的主要因素。为了保证储能装置稳定、可靠、高效工作,需要采用最优的能量流控制策略,使得储能装置在稳态时具有较高的精度,在瞬态时具有快速响应能力。本文提出了一个工作周期内四种工作模式的能量流控制策略,分别为:降压提供能量、升压提供能量、升压回馈能量和降压回馈能量。设计了基于模糊控制算法的BDPC控制器和H桥直流PWM变换器的数字PID控制器,并采用遗传算法对H桥直流PWM变换器的数字PID控制器的相关参数进行了优化设计,实现了能量流的合理有效控制,通过仿真分析验证了理论分析的正确性和控制策略的有效性,使得系统在安全可靠的基础上高效工作。为了进一步验证内燃-直线发电集成动力系统储能装置的相关理论分析、设计及控制策略的有效性和实用性,完成了基于TMS320F2812DSP的储能装置控制器的设计。在实验室搭建了储能装置小型实物原型,进行了原理性验证实验的研究,对某小型永磁直流电机两个方向运行模式分别进行了原理性验证实验。研制了内燃-直线发电集成动力系统储能装置样机,建立了储能装置实验系统,对储能装置样机的相关实验进行了研究,实验结果分析表明,所设计的储能装置以及提出的能量流控制策略能够满足内燃-直线发电集成动力系统的能量双向高效流动要求。所设计的内燃-直线发电集成动力系统储能装置及其控制方法基于改善能量的传输与转换效率的目的,可实现能量的储存、转换、传输、回馈,不只局限用于内燃-直线发电集成动力系统,对其扩展应用进行了部分研究工作。在与常规驱动系统实现能量回馈的方法比较分析的基础上,把该储能装置作为电动汽车(Electric vehicle, EV)电机驱动系统实现能量回馈制动,并通过计算机仿真对不同回馈制动方法进行了对比分析,结果验证了该方法的可行性和有效性。本储能装置适用于混合动力汽车(Hybrid electric vehicle, HEV)、纯电动汽车、功率缓冲系统、发电系统以及能量回馈系统等以电机作为动力系统且能量双向流动的场合,相对于传统方法有很大的优势,对于能量传输与转换效率技术的相关研究具有重要的理论意义和工程应用价值。

【Abstract】 A research on Energy Storage System (ESS) is one of the key technologies of Internal Combustion-Linear Generator Integrated Power System (ICLGIPS) applications. As a new type hybrid power system, ICLGIPS is mainly consisted of Components of Combustion Chamber for Four-stroke Internal Combustion Engine, Linear Electric Generator, the reversible electric energy storage system and the control unit, and can be used in Hybrid electric vehicle to replace the traditional internal combustion engine to achieve clean and efficiency use of energy. The most significant characteristic of ESS is to achieve the objective of energy storage and bi-directional high efficiency energy flow under the conditions that short time, high current and wide EMF (Electromotive force) range, and to respond quickly and accurately. This dissertation follows ESS of ICLGIPS as the research object and has depth systematic analysis to structure and parameters design of ESS, modeling and simulation, energy flow control stategy, experimental verification and applications. The work is supported by the National Advanced Technology Research and Development Plan of China (863 No.2006AA05Z236) and National Natural Science Foundation of China (No.50876043).In order to meet the requirements of bi-directional high efficiency energy flow and conversion for ICLGIPS, a novel ESS and its control method for ICLGIPS are proposed with innovative, practicability and high efficiency as the guiding principle. The use of series-parallel switchover of Ultra-capacitor (UC) banks and optimization designed bi-directional DC-DC Power Converter (BDPC) combination in the novle ESS to achieve the design concept that a low-voltage level of the variable voltage power supply system. Based on theoretical analysis, simulation and experiment research are studied, all the simulation results and experimental results justify validities and effectiveness of design.The models are built based on anslysis and design of components for ESS, include hybrid power model that composed of batteries and UC banks, BDPC model, H-bridge converter model, linear generator (LEG) model and controller model. And simulation model of the whole ESS is schemed, the simulation results justify the correctness of the model. The accuracy of real-time control and efficiency of energy flow meet well the requirements of ICLGIPS.Energy flow control strategy is an important part in the design of ESS and the main factor to affect efficiency. In order to ensure a stable, reliable and efficient operation for the whole system, an optimal energy flow control strategy is needed generally to make ESS have high accuracy in the steady state and fast response capability in the transient state. Bi-directional four operating modes of energy control strategy are proposed, and the four operating modes are forward-buck provide energy, forward-boost provide energy, reverse-buck recovery energy and reverse-boost recovery energy. The BDPC controller based on fuzzy control algorithm and the digital PID controller of H-bridge converter are designed, and parameters of the digital PID controller are optimized with genetic algorithm. So reasonable and effective controlling of energy flow is achieved. The effectiveness of theoretical analysis and control strategy is verfied by simulation, and the system works safely and reliably with high efficiency.To further verify the effectiveness and practicality of theoretical analysis, design and control strategy for ESS, the ESS controller based on the Digital Signal Processor (DSP-TMS320F2812) is designed. The experimental research of a small physical prototype of the ESS is implemented by a DSP-based development platform in the laboratory, and the test is done in bi-dircetional operating modes with a small permanent magnet DC motor. An experimental prototype of ESS for ICLGIPS is developed, the experiment research is implemented by the experiment system, and the experiment results show that the novel ESS which designed and the energy flow control strategy which proposed can meet high efficiency requirements of the system.The novel ESS and its control method for ICLGIPS have been presented based on the objective of improving energy conversion efficiency and transfer efficiency, so the function of energy storage, energy conversion and energy recovery can be achieved. The application is not just limited to ICLGIPS, so this dissertation follows the application for ICLGIPS as the base case and extends the application research to other systems. Based on comparative analysis to conventional motor drive system, the proposed novel ESS as the motor drive system of Electric vehicle (EV) to achieve regenerative braking is studied, by means of simulation on Matlab/Simulink platform, the comparative analysis on three situations adopting different regenerative braking ways is performed, and the feasibility and effectiveness of the proposed method are verified by simulation results. The proposed ESS is suitable for the systems which based on motor as electrical power and bi-directional energy flow, such as Hybrid electric vehicle (HEV), pure EV, power buffer system, power system and regenerative, it has great advantages compared to conventional methods and has important theoretical guidance and practical application value to the domestic research for improving the energy conversion efficiency and transfer efficiency.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络