节点文献

金属串和磺基苯甲酸配合物合成、结构与性质研究

Syntheses, Structures, and Characterization of Metal String and Sulfobenzoate Coordination Compounds

【作者】 张静

【导师】 朱龙观;

【作者基本信息】 浙江大学 , 化学, 2011, 博士

【摘要】 金属-有机超分子配合物因在光、电、磁等方面广泛的应用前景而备受关注。本论文研究了三核镍金属串为中心骨架的配合物以及系列磺基苯甲酸配合物的合成、晶体结构及相应性质。以三核镍金属串[Ni3(dpa)4]2+为构筑模块,结合芳香族二元羧酸、芳香族一元羧酸、脂肪族二元羧酸以及含N、S或P等不同酸性轴向配体,共合成17个新的三核镍金属串配合物;磺基苯甲酸金属配合物中主要锁定金属离子Zn2+、Sn2+和Ni2+,采用2/3/4-磺基苯甲酸(sb)为酸性配体,2,2’-联吡啶(2,2’-bipy)、4,4’-联吡啶(4,4’-bipy)、1,10-邻菲罗啉(phen)、1,2-二(4-吡啶基)乙烯(bpe)等为中性配体,共合成18个新颖的磺基苯甲酸配合物;另外单质子化磺基苯甲酸与中性配体结合形成2个磺基苯甲酸复合物,共解析37个晶体结构,对它们进行了元素分析、红外光谱分析、热重分析、紫外、荧光等性质表征,并且对三核镍金属串部分配合物进行了磁性测量以及循环伏安电化学性质测定。三核镍配合物锁定[Ni3(dpa)4]2+骨架,通过改变不同的轴向配体进而研究三核镍金属串的结构及性质。主要采取溶液分层扩散法合成,其结构随轴向配体的不同而呈现不同的网络排列,主要表现为一维和零维。芳香二元羧酸作为轴向配体时共合成5个配合物:[Ni3(dpa)4(1,2-Hbdc)2]·CH2C12·H2O(1) {[Ni3(dpa)4(1,2-bdc)]·1.5H20}n(2),{[Ni3(dpa)4(1,2-nbdc)]·1.5H2O}n(3) {[Ni3(dpa)4(bdc)]·0.5H2O}n.(4),[Ni3(dpa)4(1,4-nbdc)]n(5).其中,配合物1中,单质子化的邻苯二甲酸采取单齿端基配位,形成零维三核镍配合物;配合物2-5中二元酸完全脱质子,采取双齿桥联配位,形成一维链状三核镍超分子配合物;脂肪族二元羧酸作为轴向配体形成4个三核镍配合物:{[Ni3(dpa)4(OOCCOO)]·CH3OH·0.5H2O}n(6), {[Ni3(dpa)4(COOCH2COOH)2]·[ClO4]-·[Ni3(dpa)4(COOCH2COOH)(H2O)]+·2H2O}( 7),{[Ni3(dpa)4(fum)]·(fum)0.5·3H2O}n(8),[Ni3(dpa)4(syn-OOCHC=CHCOOCH3)2] [Ni3(dpa)4(syn-OOCHC=CHCOOCH3)(H20)](C104)(9),配合物6和8羧基桥联三核镍单元形成一维链状结构,配合物7和9中羧基单齿配位,形成零维结构;芳香族一元羧酸作为轴向配体时羧基采取单齿配位模式,共合成3个零维结构的配合物:Ni3(dpa)4(3-nbc)2(10),Ni3(dpa)4(4-nbc)2(11),Ni3(dpa)4(3,5-nbc)2(12);还合成了5个含N、S、P元素,轴向配体分别为2,3-吡嗪二酸(2,3-pzdc),2-噻吩甲酸(2-thiophenecarboxylate),硫代水杨酸,H2PO4-和HPO42-的配合物:[Ni3(dpa)4(2,3-pzdc)]n(13), Ni3(dpa)4(2-thiophenecarboxylate)2(14) [Ni3(dpa)4(H2O)2]2+[OOCC6H4SSC6H4COO)]2-·2H2O·2DMF(15) Ni3(dpa)4(H2PO4)2·4H2O(16), [Ni3(dpa)4(HPO4)]n(17),其中配合物13和17是一维结构,其余为零维结构。目前三核镍的一维结构文献报道较少,本论文讨论其结构扩展的同时还研究了部分一维三核镍金属串的磁性特征。金属锌磺基苯甲酸配合物体系中,首先研究了相似反应体系Zn/4-sb/phen在不同起始盐、合成方法、反应时间以及反应温度等条件下,得到的4个不同Zn/4-sb/phen配合物:[Zn(phen)2(2H2O)](4-Hsb)(NO3)·2H2O(18), [Zn(phen)2(2H2O)](4-sb)·4(H2O)(19), [Zn(4-sb)(phen)(2H2O)]·H2O(20), [Zn(4-sb)(phen)(H2O)]n(21),讨论了合成环境与配合物结构之相关性;其次探讨了联吡啶(2,2’-bipy和4,4’-bipy)对Zn/4-sb体系的自组装作用,合成了3个配合物:[Zn(4-sb)(2,2’-bipy)(H2O)3]·H2O(22), [Zn(4,4’-bipy)(H2O)4]·(4-sb)}n(23), [Zn(4-sb)(2,2’-bipy)(4;4’-bipy)0.5(H2O)]n·2H2O(24),含2,2’-bipy配体形成单核配合物22,其中4-sb采取双齿配位模式;含4,4’-bipy配体形成阴阳离子链配合物23,其中4-sb以抗衡阴离子形式存在;2,2’-bipy和4,4’-bipy同时参与配位时,形成一维链状配合物24,4-sb采取双齿桥连配位。对于Zn/2-sb体系,新合成了2个配合物:{[Zn(2-sb)(phen)(2H2O)]·2H2O}n(25), {[Zn(2-sb)(4,4’-bipy)(H2O)]·H2O}n(26),25中,2-sb通过磺酸基双齿桥联与ZnⅡ配位,构筑一维链状结构,26中2-sb通过羧基与磺酸基桥联ZnⅡ且与桥联配体4,4’-bipy将配合物26共同构筑成2D结构。最后还进一步研究了含有混合中性配体的Zn/4-sb体系,合成了2个配合物:[Zn(4-sb)(phen)(H2O)]·0.5 (4,4’-bipy)·3H2O(27)和{[Zn(4-sb)(phen)(bpe)1/2]·2H2O}n(28),配合物27中4-sb羧基单齿配位,4,4’-bipy作为客体分子存在结构单元中,而在配合物28中4-sb通过羧基双齿螯合磺酸基单齿配位以及bpe的桥联配位将配合物扩展成1D链状结构。本文分别分析了11个配合物中氢键和π…π堆积对其超分子网络的主导作用。磺基苯甲酸丰富的配位模式产生了锌/磺基苯甲酸体系多种结构新颖的配合物。金属锡磺基苯甲酸配合物体系中,主要研究了锡与4-sb和3-sb以及中性配体形成配合物的结构及其生物活性,共合成5个单核配合物:[Sn(CH3)3 (4,4’-bipy)(4-sb)](4,4’-H2bipy)0.5·(H2O)(29) [Sn(CH3)2(phen)(4-sb)(H2O)]·2H2O(30), [Sn(CH3)2(4-sb)(2,2’-bipy)]·2H2O(31), [Sn(CH3)2(3-sb)(phen)]·5H2O(32), [Sn(CH3)2(3-sb)(2,2’-bipy)(H2O)](33)。五个配合物中磺基苯甲酸在29中显示羧基单齿配位,30-33中则羧基双齿螯合配位,均无磺酸基配位情况出现,氢键和π…π堆积将配合物扩展为3D超分子结构,性质实验表明π…π堆积对锡配合物的抗癌活性有一定影响,荧光和紫外等性质表征进一步证实了结构与性质的关系。金属镍磺基苯甲酸配合物体系中,介绍了两个镍/4-sb/1,10-邻菲罗啉配合物[Ni(4-sb)(phen)(H2O)]·(2H2O)(34)和[Ni(phen)3]·(4-Hsb)·(OH)·(8H2O)(35)的合成、表征、结构和性质。配合物34为单核配合物,4-sb羧基双齿配位;配合物35为阴阳离子复合物,4-sb以阴离子形式游离在体系中。值得注意的是配合物35中阳离子占据由阴离子与水分子形成的三维网络孔并且是一个羧基氢未脱去同时又有氢氧根的分子。最后本论文解析了2个磺基苯甲酸复合物C12H11N2·C7H5O5S(36)和C12H9N2·C7H5O5S·2H2O(37)的晶体结构。其中磺基苯甲酸采取单质子化存在方式,分别与质子化的Hbpe+和Hphen+形成阴阳离子对体系,氢键将其结构扩展为三维超分子网络。

【Abstract】 Recently, metal-organic supramolecular complexes have been studied extensively because of their wide range of applications in optical, electricity and magnetic fields. This thesis focuses on synthetic routes, structural studies and characterization of complexes constructed by trinickel metal string building block and complexes constructed by sulfonic and neutral different nitrogen-containing ligands with various metal ions.17 trinickel complexes have been synthesized. In these complexes, trinickel unit [Ni3(dpa)4]2+ is the building block and axial ligands are aromatic dicarboxylic acids, aromatic monocarboxylic acids, aliphatic dicarboxylic acids and ligands containing N, S, or P. In the synthesis of sulfobenzoate metal complexes, we chose Zn, Sn and Ni as the metal ions, 2/3/4-sulfobenzoate (2/3/4-sb) as the acid ligand, and 2,2’-bipyridine (2,2’-bipy), 4,4’-bipyridine (4,4’-bipy),1,10-phenanthro line (1,10-phen), or 1,2-di(4-pyridl)ethylene(bpe) as the neutral ligands and 18 complexes have been synthesized and characterized. Additionally, the structures of 2 sulfobenzoate complexes with mono-protonated sulfobenzoate and neutral ligands have been studied. In all, we totally analyzed 37 complexes with their crystal structures and characterized them with IR, element analysis, TG, UV/vis, and photo luminescent. CV and magnetic analyses are only for trinickel complexes.In trinickel complexes, [Ni3(dpa)4]2+ framework is the building block and the structures and properties of trinickel complexes were investigated by changing the different axial ligands. The structures of trinickel complexes are probably different when the different axial ligands are introduced and 1D or 0D is their common molecular assembly. In the synthesis of trinickel complexes, three-layered solution method was used. When the aromatic dicarboxylic acids were used as the axial ligands, one 0D and four 1D complexes were synthesized, [Ni3(dpa)4(1,2-Hbdc)2]·CH2Cl2·H2O(1),{[Ni3(dpa)4(1,2-bdc)]·1.5H2O}n(2), {[Ni3(dpa)4(1,2-nbdc)]·1.5H2O}n(3),{[Ni3(dpa)4(bdc)]·0.5H2O}n(4), and [Ni3(dpa)4(1,4-nbdc)]n(5). When the aliphatic dicarboxylic acids were chosed to be the axial ligands, four trinickel complexes were obtained. {[Ni3(dpa)4(OOCCOO)]·CH3OH·0.5H2O}n(6), {[Ni3(dpa)4(COOCH2COOH)2]·[ClO4]-·[Ni3(dpa)4(COOCH2COOH)(H2O)]+·2H2O}( 7),{[Ni3(dpa)4(fum)]·(fum)0.5·3H2O}n(8), and [Ni3(dpa)4(syn-OOCHC=CHCOOCH3)2][Ni3(dpa)4(syn-OOCHC=CHCOOCH3)(H2 O)](ClO4)(9), in which complexes 6 and 8 are 1D chains while complexes 7 and 9 are 0D structures. When the aromatic monocarboxylic acids act as the axial ligands, three complexes were synthesized, Ni3(dpa)4(3-nbc)2(10), Ni3(dpa)4(4-nbc)2(11), and Ni3(dpa)4(3,5-nbc)2(12). Besides, five complexes containing N, S, or P were synthesized, [Ni3(dpa)4(2,3-pzdc)]n(13), Ni3(dpa)4(2-thiophenecarboxylate)2(14), [Ni3(dpa)4(H2O)2]2+[OOCC6H4SSC6H4COO)]2-·2H2O·2DMF (15), Ni3(dpa)4(H2PO4)2·4H2O(16), and [Ni3(dpa)4(HPO4)]n(17), in which 13 and 16 are 1D polymers. Currently, few 1D complexes containing trinickel core were reproted. We reported eight 1D metal string complexes.In the Zn2+/4-sb/phen system, we explored the influences of the ratio of reactants, starting materials, synthetic methods, reaction time, and reaction temperature on the structural assemblies, leading to four diverse complexes, namely [Zn(phen)2(2H2O)](4-Hsb)(NO3)·2H2O(18), [Zn(phen)2(2H2O)](4-sb)·4(H2O)(19), [Zn(4-sb)(phen)(2H2O)]·H2O(20),and [Zn(4-sb)(phen)(H2O)]n(21). The raltionship between synthetic environments and structures was discussed. Further, we investigated the influence of 2,2’-bipyridine and/or 4,4’-bipyridine on the supramolecular assemblies of the Zn2+/4-sb system, generating three new complexes, [Zn(4-sb)(2,2’-bipy)(H2O)3]·H2O(22),{[Zn(4,4’-bipy)(H2O)4]·(4-sb)}n(23), and [Zn(4-sb)(2,2’-bipy)(4,4’-bipy)0.5(H2O)]n·2H2O(24). In 22, the 4-sb bidentately chelates to the Zn2+ ion. In 23, the 4-sb is a counter ion, while in 24, the 4-sb acts as a bridging linker. In the Zn2+/2-sb system, many efforts led to two polymers, {[Zn(2-sb)(phen)(2H2O)]·2H2O}n(25) and{[Zn(2-sb)(4,4’-bipy)(H2O)]·H2O}n(26). The molecular structure of 25 is a 1D chain extended by 2-sb through the bridging action of the sulfonate. The structure of 26 is a 2D layer constructed by both 2-sb and 4,4’-bipy. We further explored the influence of two neutral ligands on the Zn2+/4-sb assemblies, giving two complexes, [Zn(4-sb)(phen)2(H2O)]·0.5(4,4’-bipy)·3H2O(27) and {[Zn(4-sb)(phen)(bpe)1/2]·2H2O}n(28). In 27, the 4-sb adopts a monodentate coordination mode and the 4,4’-bipy only exists as a guest molecule. In 28, each 4-sb coordinates to two Zn2+ ion through its carboxylate and sulfonate and both the bridging 4-sb and bpe extend the structure into 1D chain. Moreover, we carefully analyzed the hydrogen bonds andπ···πstacking interactions in these eleven Zn2+ complexes.In the Sn2+/sb system, five monomers were synthesized, [Sn(CH3)3 (4,4’-bipy)(4-sb)](4,4’-H2bipy)0.5·(H2O)(29), [Sn(CH3)2(phen)(4-sb)(H2O)]·2H2O(30), [Sn(CH3)2(4-sb)(2,2’-bipy)]·2H2O(31), [Sn(CH3)2(3-sb)(phen)]·5H2O(32), and [Sn(CH3)2(3-sb)(2,2’-bipy)(H2O)](33). Hydrogen bonds andπ···πstacking interactions were carefully analyzed. Theπ···πstacking interactions in these complexes are strongly related to the anti-cancer activities.In the Ni2+/4-sb system, two diverse complexes [Ni(4-sb)(phen)(H2O)]·(2H2O)(34) and [Ni(phen)3]·(4-Hsb)·(OH)·(8H2O)(35) were synthesized and characterized. Complex 34 is a monomer, while complex 35 is a cation-anion species. Both extending structures are 3D hydrogen-bonding networks. It is worth noting that in the complex 35, co-existence of base and acid is observed.Finally, two structures of 1:1 proton transfer complexes of sulfobenzoic acids and aromatic amines were synthesized, C12H11N2·C7H5O5S(36) and C12H9N2·C7H5O5S·2H2O(37). Mono-protonated sb ligands and protonated neutral ligands generate 3D supramolecular structures through hydrogen bonding, respectively.

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2012年 07期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络