节点文献

自抗扰控制技术在航空相机镜筒控制系统中的应用研究

Application Research of Active Disturbance Rejection Control Technique in Lensbarrel Control System of Aerial Cameras

【作者】 黄浦

【导师】 葛文奇;

【作者基本信息】 中国科学院研究生院(长春光学精密机械与物理研究所) , 机械电子工程, 2011, 博士

【摘要】 为提高航空相机控制系统性能,进而提高相机整体性能,本论文首次将自抗扰控制技术应用到航空相机中。以某航空相机镜筒控制系统为研究对象,从理论分析、数值仿真和应用实现三个方面对自抗扰控制技术进行了研究,成功实现了镜筒速度和位置的自抗扰控制。建立了系统的仿真模型和数学模型。研究和分析TD理论,验证了TD在过渡过程安排和滤波方面的良好性能。对两种非线性控制律进行了分析,设计了LPD、NLPD和TOFC控制器,验证了非线性控制律在提高系统精度及改善抗扰动性能方面的优越性。研究了ESO理论,给出了三阶LESO和NLESO的一般形式,采用带宽参数化的方法设计了单参数化的LESO。对ADRC与ESO的阶进行了讨论,阐明了二阶ADRC对一阶和三阶被控对象的控制能力。采用线性或非线性控制律,基于LESO或NLESO,设计了不同形式的ADRC。仿真结果验证了ADRC的控制效果和较强的鲁棒特性,表明ADRC在不引入积分控制的情况下,使系统迅速达到零稳态误差,增强了稳态抗偏差能力。提出了适合在航空相机伺服系统中应用的ADRC通用设计方法,对关键参数进行了分析。设计了镜筒的数字控制器,实现了ADRC速度控制,输入为1°/s时稳速精度达到0.4%以内,验证了ADRC作为一种通用控制器的控制性能。提出采用改进的TD设计速度响应过渡过程,消除了通用TD在响应初始阶段的假死区效应。采用软件模拟载机角速度扰动的方式验证了ADRC的抗扰动能力。实现了镜筒的位置控制,定位精度达到位置编码器的分辨率精度。结合多点实验参数和最小二乘法设计了变参数的位置过渡过程,实现了镜筒工作范围全程的快速无超调定位。通过其他运动机构产生的两种不同频率的周期性力矩扰动及手动扰动,验证了定位状态下ADRC的抗扰动能力。本论文的研究工作表明,ADRC完全能够达到而且在某些方面超越传统控制器的控制性能,为航空相机控制系统的设计提供了新的思路。

【Abstract】 In order to improve control performance of aerial cameras and then improve the total performance, Active Disturbance Rejection Control (ADRC) is applied into aerial cameras for the first time. The control plant of the dissertation is the lensbarrel of an aerial camera. The research on ADRC technique is from three aspects of theoretical analysis, numerical simulation and application. ADRC is applied in speed control and position control of the lensbarrel successfully.The simulation model and mathematical model are given firstly. The theory of TD is discussed and proved effective in transient design and filtering. Through analysis of two kinds of nonlinear control law, LPD, NLPD, TOFC controllers is designed and the advantage of nonlinear control is proved in precision and ability of disturbance rejection.The theory of ESO is discussed and the general format of three order LESO and NLESO. LESO of a single parameter is designed with method of bandwidth parameterization. The order of ADRC and ESO is discussed and control ability of the second order ADRC is demonstrated to the first and third plants.Different ADRC is given based on linear or nonlinear control law, LESO or NLESO. Simulation results prove the high performance and robustness. ADRC achieves zero steady state error without integration and enhances the ability of steady state error rejection. The general procedure of ADRC is presented and analysis of the important parameters is given.A digital controller is designed and speed control is achieved with precision of 0.4% when reference input is 1°/s. The result proves the excellent performance of ADRC as a general controller. The modified TD is presented for transient profile design of speed control to eliminate the dummy dead zone effect of general TD. The angular velocity disturbance is simulated by way of programming.Position control of lensbarrel is achieved with precision of photoelectric encoder resolution. The method of transient profile design with a variable parameter based on multipoint tests and least squares is presented which can achieve global positioning rapidly without overshoot. The disturbance rejection performance of ADRC in position state is confirmed by periodic torque disturbance generated by other motion plant and manual disturbance separately.The work of the dissertation indicates that ADRC can attain and even exceed the control performance of traditional controller. A new thought is presented for design of aerial camera control systems.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络