节点文献

近空间飞行器抗干扰鲁棒飞行控制研究

Research on Anti-interference Robust Flight Control for Near Space Vehicle

【作者】 贺乃宝

【导师】 姜长生;

【作者基本信息】 南京航空航天大学 , 控制理论与控制工程, 2011, 博士

【摘要】 近空间飞行器(Near Space Vehicle,NSV)的发展涉及国家安全与空间和平利用,它是各军事大国日益关注的新型飞行器,具有重大战略价值。NSV在飞行过程中呈现大包络、多飞行状态、多任务模式的特点,并且特殊的飞行环境也使其具有严重非线性、激烈快时变、强动态不确定和强耦合的对象特征,所以NSV飞行控制系统的设计成为一项新颖而又富有挑战性的课题。围绕这一难题,本文在近空间飞行器的建模与分析、不确定环境下姿态与轨迹的抗干扰鲁棒控制等方面开展了深入的研究,主要研究成果如下:首先,查阅大量的国内外公开发表的文献资料,结合本实验室已建立起来的近空间飞行器动力学模型,建立了比较完整的近空间飞行器6自由度12状态动力学方程和相应的仿真平台,通过对近空间飞行器开环特性的仿真分析可知在无控制输入的情况下,飞行特性极不稳定,结果表明所建模型具有复杂的非线性。其次,通过模糊逼近理论为NSV建立了基于T-S模糊控制的运动模型,借鉴线性系统前馈控制的思想,提出了一种新的模糊鲁棒跟踪控制律的设计方法。在不引入增广矩阵的条件下,采用反馈和前馈复合控制的策略,通过线性矩阵不等式求解前馈和反馈控制增益,进行控制器的设计,并将其应用于NSV姿态角抗干扰的跟踪控制中,控制效果良好。最后运用Lyapunov稳定性理论,分析了跟踪误差的收敛性。第三,针对存在干扰的飞行器慢回路控制系统,提出了变论域模糊控制的方法,通过对论域的伸缩因子调节,改变论域范围,减少了控制的计算量,提高了抗干扰的速度和控制精度;为了较好地克服抖振,提出了动态自适应Terminal滑模控制策略,借助中间辅助系统,进行分步控制的方法设计出控制律,同时采用Lyapunov方法严格证明了在控制律作用下,系统误差信号能够在有限时间内收敛。第四,针对受扰动的NSV系统,提出了快速自适应干扰观测器抗干扰方法。通过设计参数自适应调节律和逼近误差补偿项的自适应律,在自适应律中增添非线性指数项,提高干扰观测系统对复合干扰的逼近速度,能在有限时间内误差系统收敛为零,同时对闭环系统性能进行了严格的理论分析。最后在高超声速条件下对NSV进行仿真验证,结果表明所设计的控制方案在快速性和收敛性上具有满意的效果。最后,针对NSV纵向轨迹系统的干扰问题,提出了鲁棒自适应动态面的回馈递推控制方法,利用RBFNN对未知的复合干扰进行在线辨识,并在虚拟控制器中引入鲁棒项,来消除复合干扰对系统设计的影响,提高了系统的鲁棒性和自适应能力。最后通过纵向飞行仿真,表明了该方法在降低系统控制器复杂性的同时仍具有很好的鲁棒性。

【Abstract】 The development of near space vehicle (NSV) is related to national security and peaceful use ofspace, and it is a new vehicle which attracts increasing attention of many military powers. The flightprocess of NSV shows characteristics such as large flight envelope, multi-flight status andmulti-tasking mode. Moreover, due to its special flight environment, NSV also possesses objectsfeatures of serious nonlinearity, fast time variation, strong uncertainty and intense coupling. Therefore,the flight control system design of the NSV has become an innovative and challenging issue. Aroundthis problem, the dissertation carries out an intensive study in NSV modeling and analysis, and thenonlinear adaptive control of attitude and trajectory system in uncertain environments. The mainresults are as follows:Firstly, based on the contributions of NSV modeling in our lab and the available literatures, thedynamic equations and the corresponding simulation platform of NSV are presented. Via thesimulation analysis of open-loop dynamics, it is demonstrated that once there was no control input,the complex uncertain system is unstable.Secondly, the T-S fuzzy model of NSV kinematic model is established based on fuzzyapproximation theory and a new fuzzy robust tracking control law is designed using the feedforwardcontrol of linear system for reference. In the case that no augmented matrix is introduced, the controllaw is designed as the compound form of feedback and feedforward, and the gains of feedback andfeedforward are solved by LMI. The strategy is applied into the anti-interference control of NSVattitudes. The convergence of tracking errors is analyzed by Lyapunov method.Thirdly, considering the slow loop control system of NSV with disturbances, the variable domainfuzzy control method is presented. The control accuracy and anti-interference velocity are improvedand the calculated quantity is decreased by the change of fuzzy domain. To overcome the chatteringphenomenon, the dynamic adaptive terminal sliding-mode control strategy is raised. The control lawis designed by intermediate auxiliary system step by step. Also, Lyapunov method is used to provethat the tracking errors are converged in limited time.Fourthly, a fast adaptive disturbance observer is presented for NSV in interference environment.The approximating rate of disturbance observer is improved by adding nonlinear exponential item intoadaptive laws of parameters and approximating errors to make the tracking errors are converged tozero in limited time. Moreover, the control characters are systematically analyzed and the superiorities in rapidity and convergence are demonstrated by simulation analysis of the control of NSV athypersonic speed.Lastly, longitudinal control of NSV under uncertainty is studied. An approach of backsteppingcontrol based on adaptive dynamic surface is proposed. RBFNN is used to approximate the unknowncompound disturbance and the robust item is introduced into the virtual controller to cancel theinfluence of compound disturbance and improve the robustness and adaptation of the system.Simulation results show that the proposed strategy possesses good robustness and briefness.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络