节点文献

土体-复杂结构耦合系统地震响应数值模拟方法及应用

Numerical Simulation Method and Application to Seismic Analysis of Soil-Structure Interaction System

【作者】 杨颜志

【导师】 金先龙;

【作者基本信息】 上海交通大学 , 机械设计及理论, 2012, 博士

【摘要】 地震灾害的频繁发生,给人们带来了极大的生命和财产损失,同时也加剧了结构抗震研究的紧迫性。城市化进程的加快,交通设施的大发展,导致高层建筑、桥梁、隧道等各类工程结构遍地开花,新的工程结构越来越追求大的结构规模,独特的造型特点以及完善的结构功能,这为工程抗震研究带来了极大的挑战。工程结构抗震研究往往存在土体-结构耦合,该问题包含了高度非线性,计算需求量巨大。数值模拟方法日益成为工程结构抗震研究的重要手段,尤其是并行计算技术的应用,为求解超大规模数值计算问题提供了可能。本文立足于工程实际,研究了土体-结构耦合系统的数值模拟方法,主要研究内容包括:研究了土体-复杂结构耦合系统的数值建模方法。采用分段的bucket分类搜索和双向对称接触方式实现土体-结构耦合模型。研究了土体分层建模方法,从而使土体模型与地质勘测情况相近,并且依据地震波的传播特征,对土体单元尺寸进行了控制。研究了粘弹性人工边界在半无限土体中的应用,并且对粘弹性边界和土体计算区域进行了分析和验证。研究了土体-复杂结构耦合系统的高性能计算方法。土体-复杂结构耦合系统计算规模巨大,模型中存在大量的几何非线性、材料非线性和接触非线性问题,采用显式积分算法,具有计算效率高,适合并行计算等优点。结合上海超算中心曙光5000A高性能计算平台,基于递归二分法,提出了土体-结构耦合均衡分区方法,以土体-建筑结构耦合系统、土体-桥梁结构耦合系统和土体-隧道结构耦合系统作为工程应用实例,证实了新的分区方法具有更好的加速比和并行效率。开展了土体-超高层建筑结构耦合系统数值模拟应用。以上海中心大厦结构抗震分析为工程应用对象,根据实际工程图纸,建立了土体-桩筏基础结构-建筑主体结构-建筑幕墙结构的全三维有限元模型。数值模拟选取四条结构响应较大的地震波作为输入激励。重点分析了建筑主体结构和幕墙结构不同地震烈度下的地震响应。为上海中心大厦结构抗震设计及安全评估提供了参考。开展了土体-桥梁结构耦合系统数值模拟应用。以闵浦二桥结构抗震分析为工程应用对象,根据实际工程图纸,建立了土体-桥梁结构的全三维有限元模型。数值模拟选取50年超越概率3%的基岩加速度时程作为输入激励,进行了一致激励下和行波激励下结构地震响应计算。重点分析了主塔的变形和内力,以及主梁的变形和应力。为闵浦二桥抗震设计及安全评估提供了参考。开展了土体-隧道结构耦合系统数值模拟应用。以上海崇明长江双线隧道结构抗震分析为工程应用对象,根据实际工程图纸,建立了土体-隧道结构的全三维有限元模型。数值模拟选取50年超越概率3%和50年超越概率10%的基岩加速度时程作为输入激励,进行了一致激励下和行波激励下结构地震响应计算。重点分析了普通隧道断面变形和应力,以及联络通道的应力和变形缝张开量。为长江隧道抗震设计及安全评估提供了参考。

【Abstract】 Frequent earthquake disasters have brought a great loss of life and property to people, and they also increase the urgency of seismic analysis and research. With the rapid growth of the acceleration of urbanization and development of traffic facilities, large number of super-tall builds, bridges, and tunnels are constructed. These new projects usually require large-scale, unique shape and multi-functions, which imposes a great challenge on the seismic research of projects. Soil-structure interaction is a complex nonlinear problem and needs huge calculation consume, which is often included in engineering structure. Numerical simulation method is widely used in seismic research nowadays, and large-scale numerical simulation is feasible with the application of parallel computing. Based on the engineering practice, this paper studies the numerical simulation method of the soil-structure interaction system. The main contents include:Numerical modeling method of the soil-structure interaction system is studied. The soil-structure interaction model is established by the bucket sorting search method based on segment and bi-direction contact manner. The multi-layers modeling method of soil is researched, which makes the soil model more consistent to geological survey data. The maximum element size of soil is controlled by the propagation characteristics of seismic wave in soil. The semi-infinite foundation in the seismic analysis of soil-structures is simulated by artificial visco-elastic boundary, and several numerical tests are performed to verify the boundary.High performance computing method of soil-structure interaction system is studied. The soil-structure interaction system, which includes larger number of geometric nonlinear, material nonlinear, and contact nonlinear problems, requires huge computing consume. The explicit integration algorithm, with the advantages of higher computational efficiency and suitable for parallel computing, are used to solved this model. With high-performance computer Dawning 5000A of the Shanghai Supercomputer Center, a soil-structure interaction balanced algorithm for domain decomposition is designed and implemented according to the characteristics of soil-structure interaction model. Three engineering application examples of soil-building system, soil-bridge system and soil-tunnel system confirmed that the partition method has higher speedup and better parallel efficiency.Numerical simulation for soil-building interaction system is carried out in the application of Shanghai Center Tower in Shanghai. A 3D refined finite element of soil-pile raft foundation-main structure-curtain wall structure system is established according to engineering drawings. Four seismic accelerograms are selected as inputs in the seismic analysis. The seismic responses of the main structure and curtain wall structure are analyzed under different seismic intensity. The final results provide a reference for the seismic design of Shanghai Center Tower.Numerical simulation for soil-bridge interaction system is carried out in the application of Minpu II Bridge in Shanghai. A 3D refined finite element of soil-bridge system is established according to engineering drawings. A bedrock seismic accelerogram with 10% probability of exceedance in 50 years is selected as inputs in the seismic analysis. The seismic responses of the main tower and main truss are analyzed under uniform Excitations and non-uniform Excitations. The final results provide a reference for the seismic design of Minpu II Bridge.Numerical simulation for soil-tunnel interaction system is carried out in the application of Shanghai Chongming cross Yangtze tunnel in Shanghai. A 3D refined finite element of soil-tunnel system is established according to engineering drawings. A bedrock seismic accelerograms with 3% and 10% probability of exceedance in 50 years is selected as inputs in the seismic analysis. The seismic responses of lining and connectional passage are analyzed under uniform Excitations and non-uniform Excitations. The final results provide a reference for the seismic design of Shanghai Chongming cross Yangtze tunnel.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络