节点文献

重庆市城镇污水处理系统碳排放研究

Study on Carbon Emission of Urban Wastewater Treatment System in Chongqing

【作者】 张成

【导师】 何强;

【作者基本信息】 重庆大学 , 市政工程, 2011, 博士

【摘要】 在全球气温逐渐升高的大环境下,为应对气候变化,各国政府都开始采取措施,减少温室气体排放。在各类碳排放行业中,城市水处理系统虽然是很小的一个行业,但由于城镇水系统与人类生活密切相关,产生的碳排放也越来越受到重视。目前有关城市尺度上污水处理及污泥处理处置过程温室气体排放研究很少,更缺乏重庆地区污水处理系统的碳排放研究。根据联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)国家温室气体清单指南、优良作法指南和中国温室气体清单研究成果,结合重庆地区污水处理系统特点,以污水处理系统产生的CH4、N2O、生物成因产生的CO2和能源消耗产生的CO2为研究对象,系统总结完善了城镇污水处理、污泥处理处置碳排放核算方法和模型。核算和研究了重庆市2000-2009年污水处理碳排放和2005-2009年污泥处理处置碳排放情况和碳排放水平。预测了重庆市污水处理系统碳排放潜势,探讨污水处理系统低碳运行策略。主要研究内容与结论如下:①在城市尺度上总结完善了污水处理和污泥处理处置碳排放核算方法和模型。参考IPCC计算方法和相关资料,总结了生活污水和工业废水处理CH4、N2O和CO2排放核算方法,以及污泥生物处理、填埋、焚烧碳排放核算方法;完善了污泥输送、浓缩和脱水、稳定、干化、热解、土地利用和建材利用等处理处置碳排放核算方法和模型,同时探讨了生物成因的CO2核算方法和模型。②结合重庆市相关统计资料,对2000-2009年重庆市生活污水、工业废水处理碳排放进行了核算和研究。2000-2009年,重庆市污水处理碳排放总量为338.4万吨。其中,能源消耗间接产生的CO2是污水处理碳排放的主要贡献者,占87.87%;CH4排放量占9.6%,N2O排放量占0.1%,生物成因的CO2占2.43%。工业废水处理碳排放量高于生活污水处理的碳排放,碳排放百分比分别为:工业废水占77.6%,生活污水占22.4%。重庆市污水处理平均碳排放水平为0.2823 kg GHG/t水(CO2当量排放水平为0.9307 kg CO2/t水)。生活污水处理碳排放水平大于工业废水。③结合重庆市污泥处理处置统计数据,对2005-2009年各种污泥处理处置碳排放进行了核算。污泥运输间接产生的碳排放量为59.06万吨,污泥处理处置碳排放量为25.29万吨。在污泥处理处置中,生物成因产生的CO2是污泥处理处置碳排放的主要贡献者,占47.25%,能源消耗产生的CO2占14.71%,CH4排放量占15.26%,碳储存量占22.77%,N2O排放量所占百分比不到0.01%。重庆市污泥处理处置平均碳排放水平为0.3239 t GHG/t污泥(CO2当量碳排放水平为0.6324 t CO2/t污泥)。重庆市污泥处理处置平均碳排放水平为0.3239 t GHG/t污泥(CO2当量碳排放水平为0.6324 t CO2/t污泥)。重庆目前的几种污泥处理处置方式中,污泥消化后综合利用和污泥堆肥后土地利用的碳排放水平相对较低,污泥填埋处置碳排放水平较高。④对重庆市2009年各区县生活污水处理碳排放和各行业工业废水处理碳排放进行了核算和研究。污水处理系统产生的碳排放共70.71万吨(CO2当量为190.42万吨)。其中,能源消耗间接产生的CO2是主要碳排放源,占碳排放总量的85.08%,其次是生物成因的CO2,占6.04%,CH4排放量占5.05%,碳储存量为3.8%,N2O排放量最小,仅占0.03%。重庆市各区域(按区县划分)生活污水处理碳排放量顺序为:主城区(经济发达区)>一小时经济圈>渝东北翼>渝东南翼。重庆市各行业工业废水处理碳排放量大小顺序为:制造业>电力、燃气及水的生产与供应业>采矿业。⑤若不采取有效的碳减排措施,2015年,重庆市污水处理系统产生碳排放将达到106.97万吨,CO2当量为256.07万吨。其中,能源消耗间接产生的CO2占84.91%,具有较大的减排空间;CH4占6.29%,也具有一定减排潜力。⑥重庆市城镇污水处理系统建设在合理规划排水管网、提高污水管道输送效率的同时,还需选择合适的污水处理技术和污泥处理处置方式、降低污水处理能耗,探索废水处理系统CDM机制,减少碳排放,促进城镇污水处理系统低碳运行。

【Abstract】 With the global temperature increasing gradually,the governments in most countries have begun to take measures to reduce greenhouse gas emissions and cope with climate change. In various carbon-emission industries, urban water treatment system, a smaller industry, is closely related to human life, and so its carbon-emission is obtained more and more concerns. Nowadays, the research about greenhouse gas emission during urban wastewater treatment and sludge treatment and disposal is limited. What is more, the carbon-emission research in wastewater treatment system in Chongqing is rare. Based on the IPCC’s National Greenhouse Gas List Guide, Good Practice Guide and Chinese greenhouse gas list research results, this paper combined the characteristics of wastewater treatment system in Chongqing, and summarized and improved the carbon-emission calculation method and model in urban wastewater treatment and sludge treatment and disposal, investigated Chongqing’s carbon-emission level in the wastewater treatment system from 2000 to 2009, and also carbon-emission level in sludge treatment and disposal from 2005 to 2009, and predicted Chongqing’s carbon-emission potential in wastewater treatment system. The method and model was based on CH4 and N2O generated by wastewater treatment system, and CO2 from bio-generation and energy consumption. According to the prediction results, this paper discussed the carbon-reduction measures and low-carbon operation strategy. The main research contents and conclusions are as follows:①This paper summarized and improved the carbon-emission calculation method and model in urban wastewater treatment and sludge treatment and disposal. The CH4, CO2 and N2O emissions calculation method in urban sewage wastewater treatment and industry wastewater treatment was summarized based on the calculation method of IPCC. The carbon-emission calculation method was developed for sludge treatment and disposal including sludge transportation, thickening, digestion, and dewatering, drying, thermal treatment and sludge land applications and so on.②?The total amount of carbon emissions from wastewater treatment was 3.384 million tons in Chongqing from 2000 to 2009, of which the CO2 produced from energy consumes, CH4, N2O and bio-process CO2 accounted 87.87%, 9.6%, 0.1%, 2.43%, respectively. The carbon emission from industrial wastewater treatment and domestic wastewater treatment was 77.6% and 22.4% of total carbon emissions. The carbon-emission level from wastewater treatment was 0.2823 kg GHG/t (equivalent to 0.9307 kg CO2/t).③The total amount of carbon emissions from sludge treatment and disposal was 252,900 tons in Chongqing from 2000 to 2009, of which the CO2 emission indirectly from bio-process, energy consumes, CH4, and N2O accounted 47.25%, 14.71%, 15.26%, 0.01%, respectively. The carbon-emission level from sludge treatment and disposal was 0.3239 t GHG/t (equivalent to 0.6324 t CO2/t).The carbon emission during application of digested sludge and of composted sludge was relatively lower in all the types of sludge treatment and disposal, and the carbon emission from sludge land-fill was higher.④The amount of total carbon emissions from wastewater treatment was 707,100 tons (equivalent to 1904,200 t CO2) in Chongqing in 2009, of which the CO2 emission produced indirectly from energy consumes, CO2 emission generated from bio-process, CH4 emission, carbon storage, N2O emission accounted 85.08%, 6.04%, 5.05%, 3.8% and 0.03%, respectively. The carbon emission from domestic wastewater treatment in the parts of Chongqing in the sequence was main city zone > one hour economy circle of Chongqing > northeast wing of Chongqing > southeast wing of Chongqing. The carbon emission from industries wastewater treatment in Chongqing in the sequence was manufacturing industry > municipal service industry(including electricity, natural gas and water production and supply)> mining industry.⑤Up to 2015, the carbon emissions from wastewater treatment system will reach 1.0697 million tons (equivalent to 2.5607 million t CO2) in Chongqing, of which the CO2 emission produced indirectly from energy consumes. CO2, CH4 and N2O emission will occupy 84.91%, 6.29% and 0.04%, respectively.⑥Based on the target of low-carbon emissions, some measures taken in the urban wastewater treatment system should be focused on planning drainage network reasonably, improving the efficiency of the sewage pipeline transportation, reducing energy consumption of sewage treatment, selecting wastewater treatment technology and sludge treatment and disposal methods appropriately, exploring CDM mechanisms about wastewater treatment system to reduce carbon emissions and promote low-carbon running of wastewater treatment system.

  • 【网络出版投稿人】 重庆大学
  • 【网络出版年期】2012年 07期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络