节点文献

CuOx/WOx-ZrO2催化剂制备及其NH3-SCR催化机理研究

Preparation of CuOx /WOx-ZrO2 Catalysts and the NH3 -SCR Reaction Mechanism

【作者】 司知蠢

【导师】 翁端;

【作者基本信息】 清华大学 , 材料科学与工程, 2010, 博士

【摘要】 本论文通过共沉淀法合成WOx-ZrO2固溶体作为载体材料,采用等体积浸渍法在载体上负载组分CuO;以NH3-SCR活性测试、NO/NH3的程序升温氧化、XRD、Raman光谱、紫外可见光漫反射光谱、H2程序升温还原和NO/NH3原位吸附与脱附测试等手段研究了催化剂组分、结构与性能的构效关系,建立了NH3-SCR反应机理模型,进而通过动力学方法探讨了机理模型的合理性。CuO、WO3和ZrO2重量百分比为1:1:8,且焙烧温度为500°C时,催化剂的催化性能最好,在210-310°C NO转化率和N2选择性均超过了80%,具有比商业V2O5-WO3-TiO2催化剂更好的低温NH3-SCR活性。催化剂的NO氧化能力越强,其低温NH3-SCR活性就越高。催化剂的NH3吸附性能越高且对NH3的氧化能力越弱,其高温NH3-SCR活性越好。以WOx-ZrO2固溶体作为载体材料,一方面部分未固溶的钨组分在载体表面形成高分散的WOx基团,不但可以提高催化剂表面的Lewis酸位和Br(?)nsted酸位浓度促进NH3和NO在催化剂表面的吸附,而且可以抑制NH3在催化剂表面的氧化从使催化剂的高温活性得到提高;另一方面,可以提高载体表面铜的分散性,促使WOx与CuOx发生结构相互作用生成含Cun+-O2--Wn+基团的界面可以促进两者之间的电子相互作用,有利于NO氧化为亚硝酸根提高催化剂的低温活性。NH3-SCR反应机理研究表明:CuOx为主要的NO吸附位,WOx为主要的NH3吸附位。“NH3-NO2机理”为低温(<200°C)NH3+NO+O2反应的主要途径,即NO吸附于Cu位并被氧化为NO2,然后与吸附于W位的NH3反应生成N2和H2O;“NH2-NO2/NO机理”为高温(>250°C)NH3+NO+O2反应的主要途径,即NH3在W位上被活化为NH2,然后与吸附于Cu位的NO2/NO反应生成N2和H2O。NH3在W位上吸附进而活化为NH2是该温度条件下NH3-SCR反应的控速步骤。提高催化剂的低温NO氧化活性和抑制催化剂的高温NH3氧化活性是拓宽其温度窗口的关键。

【Abstract】 WOx-ZrO2 solid solution support was synthesized by a coprecipitation method before loading CuO. The catalysts were characterized by NH3-SCR, temperature-programmed oxidation of NO/NH3, XRD, Raman, UV-vis, H2-TPR and NO/NH3 adsorption, to study the relationships among the catalyst composition, structure, adsorption property and NH3-SCR activity. The NH3-SCR reaction mechanisms at different temperature intervals were established and validated via kinetics methods.The highest activity is achived over the optimized catalyst with the CuO: WO3:ZrO2 weight ratio of 1:1:8 and calcined at 500°C. Above 80% NO conversion and 80% N2 selectivity ishas been obtained on this catalyst at 210-310°C, which is even better than commercial V2O5-WO3-TiO2 catalyst. The optimized catalyst present higher low-temperature NH3-SCR activity and N2 selectivity thanthe commercial V2O5-WO3-TiO2 catalyst. High NO oxidation activity facilitates the high NH3-SCR activity of the catalysts in low-temperature range. The larger NH3 adsorption capacity and lower NH3 oxidation ability of the catalysts lead to the higher NH3-SCR activity of catalysts in high-temperatures range. Oxidation treatment of catalyst results in an increase of NH3-SCR activity.Copper oxides are well dispersed on WOx-ZrO2 supports due to the increased surface area by the incorporation of tungsten, and the activity for NO to NO2 on copper sites is thereby improved. Highly dispersed WOx clusters form on the support when the tungsten content exceeds its solubility in zirconia. Therefore, the concentration of Lewis and Br(?)nsted acid sites on the catalysts increases, facilitating the adsorption of NO and NH3 and inhibiting the ammonia oxidation on the catalysts. Furthermore, these highly dispersed WOx clusters strongly interact with the highly dispersed CuOx, generating abundant Cun+-O2--Wn+ interfaces. The electronic interaction arising from the oxide interfaces leads to NO oxidation to nitro compounds rather than nitrates. These factors improve the activity and selectivity to nitrogen of the catalysts in NH3-SCR reaction.“Ammonia-NO2 route”at low temperatures (<200°C) and“amine -NO/NO2”at high temperatures (>250°C) are presented for NH3-SCR reaction over this catalyst. Copper oxides are considered as the active sites for NO adsorption and its oxidation to NO2. The adsorption of ammonia and activation to amine is the rate-determing step for the high-temperature SCR reaction, which is effectively improved by tungsten modification. These effects improve the high-temperature NH3-SCR activity and N2 selectivity of catalyst. According to the above mechanism, the key factor to enlarge the temperature window of the SCR catalyst is to enhance the NO oxidation activity at low temperatures and to suppress the NH3 oxidation activity at high temperatures.

【关键词】 CuOx/WOx-ZrO2催化剂结构相互作用吸附性能NH3-SCR
【Key words】 CuOx/WOx-ZrO2StructureInteractionAdsorptionNH3-SCR
  • 【网络出版投稿人】 清华大学
  • 【网络出版年期】2012年 05期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络