节点文献

大壁虎运动行为研究及仿壁虎机器人研制

Research on Gecko’s Moving Behavior and Developing Gecko-like Robot

【作者】 张昊

【导师】 戴振东;

【作者基本信息】 南京航空航天大学 , 机械工程, 2010, 博士

【摘要】 自然界中壁虎超凡的运动能力得益于脚底50万根纳米级刚毛所产生的强大吸附力以及能轻松外翻、内收和扭转的脚趾对脚底刚毛进行简单、有效和精巧的运动控制。因此,分析壁虎的运动行为和步态特征,研制具有尺寸效应的仿壁虎微纳米刚毛阵列,并应用于仿壁虎机器人十分必要。本文以壁虎科的大壁虎为仿生对象,从运动行为、结构、运动仿真、控制、阵列制备、脚掌仿生这几个方向入手,研制仿壁虎机器人。主要研究内容如下:(1)利用自行搭建的实验系统,分别研究大壁虎在地面,墙面,天花板运动的步态和体态规律,大壁虎从地面过渡到墙面的步态规律。方法是通过摄像系统和辅助装置记录不同表面上壁虎的运动过程,并利用特征参数和图表来分析其运动规律。为机器人的结构设计,平面运动步态和地壁过渡步态规划以及步态仿真提供有力的生物学参考。(2)介绍仿壁虎机器人结构设计和技术特点。对机器人腿部关节机构进行正向与逆向运动学分析。对3种不同结构类型的仿壁虎机器人进行了机构分析。运用虚拟样机技术规划机器人地面和墙面爬行对角步态以及身体呈S型的对角步态和三角步态,并开发出基于机器人结构参数和运动特征的平面运动步态规划软件;同时还进行了地面—墙面过渡步态规划仿真和分析计算。(3)通过真空模具浇注法制备出硅橡胶基和聚氨酯基的微米级粘附阵列一级结构,并在支杆末端制备了硅橡胶基末端膨大二级结构。利用微摩擦试验机(UMT)测试了粘附阵列的切向粘附性能。结果表明:末端膨大结构增大了有效接触面积,提高了切向粘附性能。沿支杆斜切方向短距离的滑移可适当增加切向力,但随着滑移距离加大,切向力随之下降,并保持在一定范围内波动,趋于常值;末端膨大二级结构粘附阵列的粘附力随法向载荷增加而增大,当法向载荷超过一定值后,切向力逐渐减小,加载15mN的法向预载力产生最大的切向粘附力84.668mN;正向滑移产生的最大切向粘附强度1.140N/cm~2明显大于逆向滑移产生的最大切向粘附强度0.223N/cm~2。

【Abstract】 Gecko’s excellent moving ability is thought to derive from van der Waals force generated between the millions of keratinous hairs/setae and the contact surface, and the gecko’s foot which can perform simple, effective and precise control such as the well-known adduction and rotation of pad and the twist of foot-toe. So, it is necessary to study the gecko’s mobile behavior and gait characteristics and to fabricate the size-effect biomimetic micro/nano-scale ahsive arrays for applications of the gecko-like robot.As an object, Gekko gecko (gekkonidae) is widely studied from the following viewpoints of moving behavior, structure characterizations, kinematics simulation, control, and bio-mimic fabrication to develop the gecko-like robot. The main research contents are summarized as follows: (1) By using self-made testing system, we studied the gait and posture rules when the gecko moves on the ground, the wall, and the ceiling. We also studied the rules of the transition courses such as from the ground to the wall. By means of auxiliary CCD system, gecko’s movements on the different plane were detailed recorded. Based on those data, we successfully designed the characteristic parameters and charts to analyze the movement rules. Those rules are useful for the robot design, gait simulation and gait planning (gait on the plane and transition gait).(2) Inspired by above observations, we analyzed the forward and reverse kinematics of the joint mechanisms from Gecko, and tried to design the detaied structural and technical parameters for gecko-like robot. Additionally, three mobile mechanisms related to the gecko-like robot were successively introduced. By using virtual prototyping technology, we drew a highly sketch image for the robot’s gait from ground to wall, and a highly image for the“S-shaped”body diagonal gait. A plane gait planning software was developed based on structural parameters and movement characteristics.(3) This chapter prepared silicone rubber base and polyurethane-based gecko-inspired adhesion array primary structure by vacuum casting mold. Then on this basis has prepared the enlargement of silicone rubber-based secondary structure. Finally, use micro-friction testing machine (UMT) to have tested the tangent adhesion properties of the adhesion array. The results show that: the terminal enlargement structure increases the effective contact area, improve the tangential adhesion properties, with slider a short distance should be increased adhesion, but decreases with the sliding distance increased, and keep within a certain range; The adhesion force increases with the increase of the normal load and finally comes to the maximum tangential adhesion force of 84.668mN under the preload 15mN, when the normal load exceeds a certain value, the adhesion strength decreases, and maintains on this fluctuates, tends to the constant; The maximum shear adhesion strength of sliding with the setae is about 1.140N/cm2, significantly greater than that sliding against the setae produces the shear adhesion strength is about 0.223N/cm~2.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络