节点文献

非线性模型预测控制方法在滑翔弹道控制中的应用研究

The Application of Nonlinear Model Predictive Control Method in the Gliding Trajectory Control

【作者】 修观

【导师】 王良明;

【作者基本信息】 南京理工大学 , 兵器发射理论与技术, 2011, 博士

【摘要】 滑翔增程是目前采用的较为有效的一种弹箭增程技术。制导炮弹要通过无动力滑翔飞行达到“远射程、大落角、高精度”的战术技术指标要求,先要对其滑翔弹道进行优化设计,且制导炮弹滑翔启控点散布大和其飞行过程是一个非线性的、时变的、有约束的和受外界随机干扰影响的控制过程,还要对其飞行控制系统进行良好设计。针对以上制导炮弹滑翔增程技术需求,本文研究了制导炮弹弹道优化,并基于非线性模型预测控制理论设计了其控制系统。本文的主要主要工作和意义有以下几个方面:1)根据鸭式布局制导炮弹的气动特性和运动特点,建立了其六自由度飞行力学模型。基于“瞬时平衡”假设,对制导炮弹的全弹道刚体运动方程组进行简化,建立了纵向平面内炮弹滑翔飞行的质点运动方程,为研究制导炮弹在纵向平面内的最优滑翔飞行提供了数学模型。2)基于纵向平面内制导炮弹质心运动模型,结合约束条件与最大射程目标函数,建立了滑翔最大射程弹道优化模型。以直接参数化法和序列二次规划(SQP)方法相结合的优化算法,作为制导炮弹弹道优化的算法。将常规无滑翔最大射程弹道与滑翔最大射程弹道进行比较,得到了滑翔段弹道区别于常规弹道的一些弹道特性。并将考虑了控制余量的滑翔弹道作为滑翔控制跟踪的方案弹道。3)提出了采用具有解析形式控制律的非线性预测控制(简记为ANMPC)方法来设计制导炮弹滑翔控制器,实现对滑翔方案弹道的跟踪控制。为了设计方便,将控制器分成质心外回路和姿态内回路两个回路进行设计。质心外回路(ANMPC质心控制器)实现对质心位置(高度和侧偏)指令的跟踪,并获得攻角和侧滑角指令。姿态内回路包含ANMPC姿态控制器和ANMPC倾斜稳定控制器,其中ANMPC姿态控制器实现对攻角和侧滑角指令的跟踪控制,获得升降舵偏角和方向舵偏角;而ANMPC倾斜稳定控制器则实现滚转角的稳定,获得副翼偏角。为了分析ANMPC控制器的设计参数,即控制阶数和预测时域,对控制器性能的影响规律,以ANMPC控制器姿态内回路为例进行了仿真分析。在获得设计参数对控制性能的影响规律之后,根据控制器性能要求确定了控制阶数和预测时域,并对ANMPC控制器应用于制导炮弹滑翔控制进行了数值仿真。仿真结果表明ANMPC控制器具有良好的控制效果,实现滑翔增程的目的。4)研究了基于序列二次规划(SQP)的非线性模型预测控制(SNMPC)在制导炮弹滑翔段控制中的应用,对于可能在制导炮弹滑翔段控制中应用的各种形式的SNMPC方法,包括经典SNMPC、多速率SNMPC和实时SNMPC,进行详细介绍、仿真和分析,目的在于寻找适合于制导炮弹快变动态特性的SNMPC。三种SNMPC的控制效果基本相同,但经典SNMPC控制律求解最慢,多速率和实时SNMPC控制律求解较快。通过对这些SNMPC方法进行分析改进,最终提出了改进型实时SNMPC方法。此改进型实时SNMPC方法在减小在线优化中的待优变量数量的基础上充分利用优化过程中的有用信息实现了控制律的快速求解,因此比较适合运用于设计制导炮弹滑翔控制器。5)提出了一种新的组合型NMPC(INMPC)方法,此INMPC方法综合了SNMPC方法和ANMPC方法的优点,SNMPC方法能显式地处理有约束的控制问题,ANMPC方法能快速求解控制律。通过SNMPC方法和ANMPC方法的合理组合得到的组合型NMPC方法,克服了SNMPC方法的控制延迟和ANMPC方法没有考虑约束的缺点。因此,INMPC方法更适合于制导炮弹快变动态特性,并能满足其控制的约束条件。设计了制导炮弹INMPC滑翔控制器,通过仿真表明INMPC控制器能满足制导炮弹非线性、多约束和快时变的特点,且INMPC控制器具有一定的鲁棒性。

【Abstract】 The gliding flight of projectile is an effective range-extended technology at present. In order to satisfy tactical guideline of ’large range, big terminal angle, high accuracy’, the trajectory of the guided projectile with gliding flight is needed to be optimized. Because the gliding control initial point dispersion is larger and the gliding flight process is a nonlinear, time-varying, constrained and effected by random outside disturbances control process, the flight control system is also needed to be designed well. For the requirements of glide range-extended technology, the guided projectile trajectory optimization and nonlinear model predictive control system are designed and researched in the dissertation. The main contents are depicted as follows:1) According to the aerodynamic and motion characteristics of the canard configuration guided projectile, the six degree of freedom flight dynamic model is established. Based on instantaneous balance assumption, some reductions are applied to the six degree of freedom flight dynamic equations, and the longitudinal particle trajectory equation of the gliding flight projectile is proposed. This longitudinal particle trajectory equation is the numerical model for studying the guided projectile optimal gliding flight.2) Together with the guided projectile longitudinal particle trajectory equation, constraint conditions and the maximal gliding range objective function, the maximal gliding range trajectory optimizing model is established. The optimal algorithm including direct parametric method and sequential quadratic programming is applied to solve the guided projectile optimal trajectory. The gliding trajectory characteristics are obtained compared with the ordinal trajectory. Taking the gliding trajectory that is cosindering control ability as the concept trajectory for the gliding controller.3) To design guided projectile gliding controller, a nonlinear model predictive control method with an analytical control law (ANMPC) is proposed. For simplify designing, the guided projectile ANMPC gliding controller is divided into a guidance loop and an attitude control loop. The ANMPC guidance loop converts the mass point altitude and side deflection commands to angel-of-attack and side slip commands. The attitude control loop includes an ANMPC attitude controller and an ANMPC rolling stabilizing controller. The ANMPC attitude controller converts angel-of-attack and side slip commands to elevator and rudder fin deflections, and the ANMPC rolling stabilizing controller converts roll angle command to aileron fin deflection. In order to analyze the design parameters i.e. control order and predictive horizon affecting the ANMPC controller perfonnance, the ANMPC control loop is demonstrated through numerical simulation. And then, the guided projectile ANMPC gliding controller is demonstrated to track the concept gliding trajectory. The simulation results show that the ANMPC gliding controller possesses good control performance and the guided projectile achieves extending range.4) To design guided projectile gliding controller, another nonlinear model predictive control method basis on sequential quadratic programming (SNMPC) is proposed. There are some kinds of SNMPC methods, including classical SNMPC, multi-rate SNMPC and real-time SNMPC, that may be used to design the gliding controller. In order to finding a kind of SNMPC method which is more appropriate for the guided projectile fast dynamic characteristics, the introductions, simulations and analyses of the SNMPC methods and the comparisons between them are carried our in detail. The control performance of the three kinds SNMPC method is almost the same, but the control law of the classical SNMPC is solved slowly, and the control law of the multi-rate and real-time SNMPC method is solved most fast. And then the classical and real-time SNMPC methods are improved. The improved SNMPC methods decrease the on-line optimal variable numbers and make use of the useful information during the optimization progress, so that they could solve control laws faster. The improved real-time SNMPC is most appropriate for the guided projectile.5) A new integrated nonlinear model predictive control (INMPC) method is developed. INMPC method, which is obtained by appropriately synthesizing SNMPC and ANMPC methods, combines the advantages of them. SNMPC method could explicitly handle constrained control problems. ANMPC method could provide control law immediately. INMPC method avoids the disadvantages that the control delay of SNMPC method and ANMPC method lack of considering constraints, so that it is adapt to guided projectile fast dynamic characteristics and deals with constraints. An INMPC gliding controller is designed for the guided projectile and numerical simulations are demonstrated. The simulation results indicate that the INMPC gliding controller is able to meet the guided projectile nonlinear, constrained and fast time-varying characteristics, and the INMPC gliding controller possesses robustness.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络