节点文献

千位三值光学处理器理论、结构和实现

Theory, Architecture, and Implementation of Thousand-trit Ternary Optical Processor

【作者】 谌章义

【导师】 金翊;

【作者基本信息】 上海大学 , 计算机应用, 2010, 博士

【摘要】 三值光学计算机将光强与偏振方向结合起来表示三值信息,并且充分利用成熟的电子设备和光学元件来构造各部件,具有光传送、光运算、电控制和电存储等特点。千位三值光学处理器是三值光学计算机的核心部件,主要包括三部分:编码器、运算器和解码器。编码器根据用户输入的二值电信号调制出对应的三态光信号,并送入运算器。运算器通过不同光信号间的转换来实现信息的光学处理器。解码器将运算器输出的结果三态光信号转换成二值电信号返回给用户。编码器和运算器主要组成器件是偏振片和液晶,解码器的主要组成器件是感光阵列和配套的存储单元。本课题主要研究千位三值光学处理器的构造理论,设计可行的体系结构,实现能并行处理千位三值数据的光学处理器系统。这项研究已经取得的主要成果和创新点有:1)研发成功第一款千位三值光学处理器的光学组件,包括以自主研发的并行液晶阵列为核心的光学硬件和相应控制软件。2)将360位三值光学计算机实验系统的解码器成功移植到千位三值光学处理器。3)将光学组件和解码器部件集成为一个完整的千位三值光学处理器系统,并完成了系统的软硬件调试和检测。4)设计了三值光学运算器的第一个重构控制电路。作者的工作改进了千位三值光学处理器的体系结构,简化了运算器的构造过程,丰富了三值光学处理器的构造理论。在该系统上,研究团队的其他成员进行了进行了三值光学计算机MSD加法、矩阵向量乘、元胞自动机等研究实验,进一步证明了本系统的正确性和有效性,展示了千位三值光学处理器巨位数并行处理的优势和广阔的应用前景。

【Abstract】 Ternary optical computer (TOC) utilizes intensity and polarizations of light to present ternary information. For using many mature electrical equipments and optical elements, TOS has the characteristics of optical procession, transmission, electrical control, and opt-electrical hybrid memory. The core of TOC is the thousand-trit (trit means ternary number) ternary optical processor (TTOP) that consists of three main components----encoder, calculator, and decoder. The encoder modulates tri-valued optical signals according to applied electrical signals, and these tri-valued optical signals injected to the calculator. The calculator completes the operation through conversing states of tri-valued optical signals. These two components are made of polarizers and parallel controlled liquid crystal (LC) arrays. The decoder converts the result optical signals came from the calculator to corresponding electrical ones. The decoder is made of photoelectric sensors array and corresponding storage. The main works of this paper are researching of the theory of TTOP, designing feasible architecture, and implementing a TTOP system.The achievements that have been made in this paper can be summarized as follows:1) The first parallel controlled LC array that complies with the design requirements of TTOP is developed. The LC array is utilized to implement the optical components of TTOP. The control system of optical components is completed.2) The decoder of TTOP that referenced to the decoder of 360-trit experiment system is implemented.3) The optical components and decoder are integrated into a TTOP system. The test and self-checking system of TTOP are completed. 4) The first hardware reconfigurable calculator is designed.The author’s work impoves the architecture of TTOP and simplifies the realization of optical calculator, and thus enriches the theory of TTOP. Using TTOP as platform, the other members of TOC research team complete TOC MSD adder, Matrix-Vector multiplyer, and Cellular Automata (CA) experiments that further prove the correctness and usability of TTOP. These experiments reveal TTOP’s advantage of huge data parallel processing and its wide field of application with good prospects.

  • 【网络出版投稿人】 上海大学
  • 【网络出版年期】2011年 12期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络