节点文献

海洋重力辅助导航方法及应用

Marine Gravity Aided Navigation Methods with Their Applications

【作者】 彭富清

【导师】 夏哲仁;

【作者基本信息】 解放军信息工程大学 , 大地测量学与测量工程, 2009, 博士

【摘要】 本文将海洋重力辅助导航界定为利用海洋重力场的空间分布特征提高惯性导航精度,修正或限定惯性导航系统误差积累的无源自主导航方法。其技术途径有三条:一是惯性导航系统重力补偿,用于提高惯性导航系统中矢量重力参数的精度,改善惯性导航系统的力学编排,从而改进惯性导航系统本身的精度;二是重力匹配,即以重力场的空间特征作为导航信标,通过与惯性导航系统的组合修正或限定惯性导航误差积累,延长惯性导航系统在水下的有效工作时间并减少其对GPS等的依赖,增强水下导航系统的隐蔽性;三是制图与定位同步技术(SLAM),用于事先没有绘制重力基准图或重力基准图精度不足海域,它在航行器航行过程中创建增量式重力基准图,同时依据该基准图确定航行器位置。海洋重力辅助导航系统主要由惯性导航系统(INS)、实时重力测量系统、重力基准图和辅助导航算法等组成。本文以上述各组成部分为研究对象,系统提出了海洋重力辅助导航理论方法并论证其技术可行性,主要工作包括:(1)分析了惯性导航系统的误差特征及其修正方法;(2)提出了重力辅助导航基本原理,即通过重力补偿提高惯性导航精度,在重力基准图预先已制作区域通过重力匹配限定惯性导航的误差积累,在缺少重力基准图区域将SLAM作为重力匹配的补充;(3)研究了海洋重力仪和重力梯度仪的技术特点及其测量方法,分析了二者用作实时重力测量系统的技术可行性;(4)研究了卫星测高反演海洋重力场的理论方法,包括卫星测高交叉点平差、共线平差、测高垂线偏差推估、海洋重力场反演等,分析了卫星测高等现代海洋重力技术绘制海洋重力基准图的技术可行性;(5)系统提出了惯性导航系统重力补偿技术,包括基于海洋重力基准图的重力补偿方法和基于重力梯度仪的重力补偿方法;(6)依据重力场空间分布特性提出组合匹配方法,阐明了组合匹配的工作流程,分析了惯性导航误差、基准图误差、实时重力测量误差等对重力匹配的影响,研究了评估重力场适配性的理论方法;(7)探索了基于SLAM的海洋重力辅助导航方法,阐述了利用地图增强卡尔曼滤波(MAK)实现同时定位与重力基准图创建的理论技术; (8)在10 o S ~10oN, 160 o E ~180oE海域开展了海洋重力辅助导航仿真验证,包括基于重力基准图INS重力补偿仿真、基于重力梯度仪的INS重力补偿仿真、基于海洋重力仪的重力匹配仿真、基于重力梯度仪的重力匹配仿真;(9)依照海洋重力辅助导航系统的研究发展现状及其应用需求,开展海洋重力辅助导航应用设计。本文研究结果和结论及技术创新点如下。(1)海洋重力辅助导航可直接确定相对于基准参考坐标系的位置和速度,其精度不随航行时间或航行距离而改变,无需浮出水面或使用外部坐标,也不需要来自地球的导航和通信信号,有望在水下实现惯性导航系统综合校正从而最终解决水下导航隐蔽性问题。(2)海洋重力仪用作海洋重力辅助导航中的实时重力测量系统时需顾及滞后效应和厄特弗斯效应的影响;而海洋重力梯度仪不受滞后效应或厄特弗斯效应的影响,是海洋重力辅助导航中较理想的实时重力测量系统。(3)本文提出了精确、快速计算卫星测高交叉点和正常点及其平均海面高的理论方法,从而改进了卫星测高的交叉点平差和共线平差技术;另外,卫星测高等现代海洋重力探测技术所绘制的海洋重力基准图的空间分辨率高于2′×2′,精度优于7毫伽,为海洋重力辅助导航的工程实现提供了条件。(4)本文推导了惯性导航系统中的重力参数误差影响惯性导航精度的严密理论公式,阐明了惯性导航系统中的重力参数误差每小时可产生数百米的惯性导航误差,已成为高精度惯性导航系统的主要误差源之一。(5)在实验海域,基于重力基准图的INS重力补偿技术在100小时内可提高惯性导航精度约16000米;基于重力梯度仪的INS重力补偿可有效改进惯性导航精度;基于海洋重力仪的重力匹配可将惯性导航系统的误差限定在3000米以内;基于重力梯度仪的重力匹配可将惯性导航系统的误差限定在2000米左右。

【Abstract】 The marine gravity aided navigation is defined as the technique which improves the precision or corrects the drifted biases of INS by the marine gravity information. And the marine gravity aided navigation methods include the gravity compensation for INS, the gravity map-matching navigation and SLAM.The marine gravity aided navigation systems are composed of the inertial navigation systems, the real-time marine gravimetry systems, the marine gravity reference maps and the algorithms for aiding navigation. In the paper, the whole systems of marine gravity aided navigation are the research objects, and the marine gravity aided navigation methods are proposed completely and their technical feasibilities are demonstrated. Firstly, the INS error properties with their correction are analyzed. Secondly, the fundamental principles of the marine gravity aided navigation are presented, which includes improving the INS precision by the gravity compensation and bounding the INS drifted errors by the gravity matching navigation with the gravity reference map or by SLAM without the gravity reference map. Thirdly, the technical characterizations and the survey approaches of the marine gravimeters and the gravity gradiometers are discussed. Fourthly, the methods for the marine gravity reference mapping by the modern marine gravity exploration technologies such as the altimetry are studied, which includes the crossover adjustments, the collinear adjustments, predictions of the vertical deflections and the marine gravity maps from the altimetry data. Fifthly, the gravity compensation methods for INS are proposed, which can be classified into two categories according to the determination of the gravity vectors. One is the gravity compensation based on the gravity reference map and another based on gravity gradiometers observations. Sixthly, the integrated gravity map-matching navigation methods are proposed according to the gravity field’s properties, which include the procedures of the integrated gravity map-matching navigation, the influences on the gravity map-matching navigation precision from the errors of the INS, the gravity reference maps, the real-time gravimetry systems, and the approaches of evaluating the gravity field map-matching applicability were proposed. Seventhly, the SLAM is explored to bound the INS drifted error where there is no gravity reference maps. Eighthly, the simulations of the gravity aided navigation were implemented in the 10 o S ~10oN、16 0oE~180oE sea area, which includes the simulation of the gravity compensation for INS based on the gravity reference map or based on the gravity gradiometers observations and the simulation of the gravity matching navigation based on the gravimeters observations or the gravity gradiometers observations. In the end, the applications of the marine gravity aided navigation systems were designed according to their status and requirements.In the paper, the conclusions and the innovations are as follows. (1)The marine gravity aided navigation is able to determine the navigation velocities and positions related to the earth referenced coordinate systems directly and their navigation precisions don’t be influenced as the navigation time or distance is added. It doesn’t need to float on the sea surface, or receive outside position information or communication message from the earth. And it can be used to correct the underwater INS errors and resolved the underwater covert navigation problems completely. (2) The gravity gradiometers are the ideal real-time marine gravimetry systems. And the lagged time and the E?tv?s effects must be taken into account if the gravimeters are used as the real-time marine gravimetry systems. (3)The fast computing algorithms for the altimetry crossovers and the nominal points with their mean sea surface heights precisely are presented, which refined the altimetry crossover adjustments and the collinear adjustments. And it is proved that the marine gravity reference map resolution is superior to 2′×2′and their precision is superior to 7 mGal nowadays, which make it possible for the realization of the marine gravity aided navigation. (4) The rigorous formulae for the influences on the INS from the INS gravity parameter errors are induced, which proves that the horizontal navigation errors from the INS gravity parameter errors can reach hundreds of meters in one hour. And the INS gravity parameters’errors have become the main error causes of the high precise INS. (5)In the experiment sea area, the gravity compensation based on the gravity reference map improved the INS precision by 16000 meters in 100 hours and the gravity compensation for the INS based on the gravity gradiometers improved the INS precision inefficiently, and the gravity map-matching navigation based on the gravimeters bounds the INS errors less than 3000 meters and the gravity map-matching navigation based on the gravity gradiometers bounds the INS errors about 2000 meters.

  • 【分类号】P223;U675.7
  • 【被引频次】7
  • 【下载频次】804
  • 攻读期成果
节点文献中: 

本文链接的文献网络图示:

本文的引文网络